Reverse-Engineering DisplayLink devices
USB to DVI for Hackers

Florian Echtler <floe@butterbrot.org>
Chris Hodges <chrisly@platon42.de>

November 27, 2009

Abstract

DisplayLink produces nice, useful USB graphics adapters. Unfortunately, they had no real Linux
support. In this paper, we’ll describe how we first reverse-engineered the encryption and basic
protocol, prompting DisplayLink to actually release a Linux driver on their own. However, this
driver still didn’t support compression. In the second part, we’ll therefore describe how we reverse-
engineered the compression algorithm.

1 Introduction

Say hello to Displaylink:

Their devices have some nice features: pretty cheap, DVI output, magic compression! So let’s
look at the protocol: just install the driver on WinXP in VirtualBox, attach the device to VM and
start usbmon on the host. Unfortunately, when you look at the following example of some captured
bulk transfers for a black screen, it quickly becomes apparent that..

S Bo:4:122:1 -115 8192 = eb88b508 afd71fab 704418d1 da3c920d ee5ba235 b429d465 2f80de90 0e35c9bf
S Bo:4:122:1 -115 8192 = e56107e7 3fabdf64 397elclb a20d417b 8135b460 £77b80a0 fbO90alba 86edbd27
S Bo:4:122:1 -115 2560 = Oedb3fab df64397e 1c129e0d 417b8135 b460febf 80a0fb90 alba86ed4 99279909

S Bo:4:122:1 -115 16384 = lee7f414 85975c2e a39601a8 801936¢cb 613e0df0 14b01b04 48bdfdb5 64£38e50

.it’s all encrypted!
What now?

First step, of course, is to have a look at the internals of the device (see figure [1f):
1. one DVI encoder (Chrontel CH7301)
2. one 128 MBit SDRAM (Hynix HY5DU281622ETP)
3. and one HUGE ASIC (DisplayLink DIL-120)

Without an electron microscope: tough luck.



usl ¢

o) °
0000000
00000000

00
*

&
g
s
3
a
3
"
=

Figure 1: Displaylink internals

2 Cracking the Encryption
2.1 Replay Attack

The first and most simple approach to getting rid of the encryption is really a no-brainer:
try a replay attack and just dump the same data to the device again. We hacked together a
Python script to parse the usbmon dump and send it through pyusb, and presto: a Windows
desktop image! We verified that the same log works on different devices (DL-120 and DL-
160), consequently the encryption doesn’t seem to contain any device-specific components.

A 7standard” init sequence (from device connection to static desktop image) seems to
consist of several small blocks (10b - 4kB) and two big blocks (150 - 300kB). These blocks
have to be sent in the original order, otherwise, the device crashes. This indicates a stream
cipher (data[n] xor key[n%keylength]) which gets out of sync and causes some internal checks
to fail if the blocks are sent in a different order. However, it was possible to insert arbitrary
delays between the blocks, which showed that the first big block clears the framebuffer to
black and the second big block contains the desktop image

2.2 Finding the Crypto Key

As several repeated initializations yield different sequences, it’s obvious that a crypto key has
to be hidden somewhere in the init sequence. The very first part of the initialization consists
of control transfers which appear to be unencrypted. One example is the following readout
of the monitor info (EDID).

S Ci:4:122:0 s cO 02 0000 00al 0040 64 <

C Ci:4:122:0 0 64 = 0000ffff ffffffff 0038a38e 66010101 012c0f01 0380261e 78eall4b adbadaal
S Ci:4:122:0 s cO 02 3f00 00al 0040 64 <

C Ci:4:122:0 0 64 = 00701300 782d1100 001e0000 00£d0038 4b1f510e 000a2020 20202020 000000fc
S Ci:4:122:0 s cO 02 7e00 00al 0003 3 <

C Ci:4:122:0 0 3 = 000053

Even more interesting are 16 seemingly random bytes in the first part of the init sequence
which change after each initialization. However, as we had the driver running inside the VM,
we noticed that these bytes repeat sometimes after a VM restart. Safe to say that this smells
like a crypto key.

S Co0:4:122:0 s 40 12 0000 0000 0010 16 = 2923be84 el6cd6ae 529049f1 filbbe9eb
C Co:4:122:0 0 16 >

Some more samples of these 16 random bytes:

e 29 23 be 84 el 6¢c d6 ae 52 90 49 f1 f1 bb e9 eb
o f6 22 91 9d el 8b 1f da b0 ca 99 02 b9 72 9d 49
e b3 12 4d c8 43 bb 8b a6 1f 03 ba 7d 09 38 25 1f



At this point, Chris had a great idea: just Google for these hex strings. Much to our
surprise, Google actually produced several hits! How is this possible? Even more confusingly,
the results are from many different contexts.. The solution, as explained by this Websiteﬂ
this is simply output of the default Microsoft random number generator! Conclusion: this is
the crypto key.

2.3 Finding The Crypto Algorithm

So we found the key - now what about the algorithm? To get some ideas, we did a very basic
type of cryptanalysis and just compared the cryptotext with itself. Pseudocode:

unsigned data[lenx2]
int counter[n] ={ 0, 0, 0, ..., O }

for i =1 ton
for p = 0 to len
if datalp] == data[p+il
counter [i]++
endfor
endfor

We did this with the first big block of encrypted data (which clears the framebuffer to
black) and arrived at the following results (for n in 1..8192):

e shift 8190: count 6333
e shift 4095: count 3148
e shift 7631: count 49
e shift 7748: count 48

Obviously, there’s an unmistakable maximum at 4095 (and multiples). This allows the
conclusion that the key period is 4095, which is 2'2—1. A period of 2" —1 is a strong indicator
for a certain class of pseudo-random number generators which are called linear feedback shift
register (LF'SR).

2.4 Reconstructing The Crypto Algorithm

At this point, we have two basic assumptions: a) we are dealing with a basic stream cipher,
which is b) generated through a maximal 12-bit LFSR. What is needed now is to actually
find the keystream generator. Therefore: it’s time for the disassembler (IDA Pro freeware
edition). A quick string analysis showed that the driver actually uses libulel In libusb,
bulk data is submitted through usb_bulk write - our first approach was to try to work back-
wards from this call.

[insert looong weekend spent reading assembler and cursing at virtual functions]

After this approach didn’t provide really convincing results, we tried a much simpler
approach, which was to search the assembler code for the immediate value 0xOFFF = 4095 (as
the key routine obviously will generate this much data). Consequently, we found a subroutine
with three nested loops which generates 4095 bytes of data. Within this subroutine, we also
located a test against 0x0829 = 0000 1000 0010 1001 = x'? + 2% + 2* + 2'. Some textbook
reading reveals that this is a generator polynom for a maximum 12-bit LFSR. So we’ve got
the keystream generator!

One interesting observation is that the keystream is always the same.. so where does the
random 16-byte key fit in? A closer look at the LFSR routine revealed that it does not only
generate the keystream (offset — value), but also a reverse-mapping table (value — offset).

Thttp://www.maushammer . com/systems/dakotadigital/lcd-usb.html#authentication
2which might generate interesting licensing issues


http://www.maushammer.com/systems/dakotadigital/lcd-usb.html#authentication

The start offset for the keystream is taken from this reverse-mapping table, and the index
into the RMT is in turn generated from the 16-byte key through a CRC routine. The CRC
generator polynom is 0x180F = 0001 1000 0000 1111 = 2'? + 2! + 23 + 22 + = + 1 (standard
CRC12).

As the CRC12 of the 16-byte key is therefore the starting value for the LFSR, a key with
a CRC12 of zero should disable encryption! Our first tests with some generated keys didn’t
work, however, Chris identified a debug mode flag in the driver. When enabled, one of several
default keys with CRC12 = 0 is used (keys were taken from different driver versions):

e 47 3d 16 97 c6 fe 60 15 5e 88 1c a7 dc b7 6f f2
e 57 cd dc a7 1c 88 be 15 60 fe c6 97 16 3d 47 f2

3 The Graphics Protocol

Now that we had disabled the encryption, it was pretty easy to figure out the basics of the
communications protocol by simply setting various desktop backgrounds in the Windows
XP VM and observing the resulting USB dumps. We won’t go into much detail regarding
the command set here, for a complete reference, please see http://floe.butterbrot.org/
displaylink/| and http://github.com/floe/tubecable. One important detail, however,
is that the device manages two separate framebuffers in its memory space, one for 16-bit
color depth (RGB565) and an additional 8-bit framebuffer (RGB323) for combined 24-bit
color depth. Every graphics command (raw write, RLE write, bitblt..) comes in an 8-bit and
a 16-bit version for each of the two framebuffers.

One thing still missing at this point, however, was the Huffman-based graphics compres-
sion.

3.1 Intermission: DisplayLink’s Reaction

After we had published this on the web, nothing happened for a while. Then, quite soon
after some people had started actually implementing drivers, Displaylink announced their
own opensource library, 1ibdlo. While this is generally laudable, the first version was still
with encrypted init sequences and without compression.

Hence: back to the drawing board.

3.2 Huffman Compression

There is a run-length compression mode which is pretty trivial (it’s actually used by the
Windows driver to clear the framebuffer at initialization). However, the Huffman-style com-
pression is not so trivial. While we had logged many compressed images and could also replay
them, we had so far not been able to compress our own data, as the Huffman table was still
missing.

During the secondary init sequence, we observed a 4.5 kB block of data with no apparent
purpose (in fact, this block even is preceded by its own command 0xAF 0xEO which is used
nowhere else). When this block is omitted, everything works as before - with the exception
of Huffman-based compression. Obviously, this block contains the Huffman table. Unfortu-
nately, this table itself is in compressed form, and a search in the driver didn’t reveal any
clues to the memory location of the uncompressed version.

However, the goal of finding the Huffman table can actually be interpreted as another
crypto problem. Huffman-encoded data is a kind of ciphertext, whereas the raw, uncom-
pressed data is the plaintext. And as the uncompressed data is just the screen contents of
the VM, we can perform a chosen-plaintext attack!

From looking at the encoded results of various color stripe patterns, it quickly became
apparent that the encoding scheme isn’t compressing pixel values, but pixel value differences,
e.g. in the range of -32767 to 32768 for 16-bit data. Another rather obvious result was that
the 2-bit sequence 00 encodes the value 0. Unfortunately, it wasn’t so obvious how any of the
other sequences looked. A bit of knowledge about Huffman codes at least allows to conclude


http://floe.butterbrot.org/displaylink/
http://floe.butterbrot.org/displaylink/
http://github.com/floe/tubecable

that every other pattern either has to start with 1 or 01.

On the other hand, that’s just 65535 pairs of value — bit-sequence. The simple solution:
brute force!

+n -n +Nn -nN

i i B R e B
1
1

- -

1
1
1
+n O -n

Figure 2: Huffman-bruteforce pattern

The pattern in figure [2] is generated for every 16-bit color n on a black background. This
results in two distinct bit sequences: the first one is 00n4n_nyn_0000.., the second one is
0074.0072_0000... By finding the longest repeating substring in the first sequence, the pattern
nyn_ can be isolated. By finding the longest common prefix with the second sequence, the
pattern ny can be retrieved and consequently also the pattern n_.

With a bit of shell scripting and some small string analysis tools, this process was auto-
mated to retrieve the codes for 32 color values in one iteration. Total running time was about
4 hours; about 50 values had to be retried with a slightly modified image, as the bit patterns
had been split across command boundaries.

4 Future Work

There’s two things missing from the picture. First, the Huffman table has only been created
for 16-bit mode - the above process should also be done for 8-bit mode where a single 0 bit
encodes the difference value 0. The second thing is the encoding scheme which is used to
send the Huffman table to the device - in memory, the table occupies about 320 kB, but is
transmitted as a blob of only 4.5 kB.



	Introduction
	Cracking the Encryption
	Replay Attack
	Finding the Crypto Key
	Finding The Crypto Algorithm
	Reconstructing The Crypto Algorithm

	The Graphics Protocol
	Intermission: DisplayLink's Reaction
	Huffman Compression

	Future Work

