
secuBT : Hacking the Hackers with User-Space Virtualization

Mathias Payer
Department of Computer Science

ETH Zurich

Abstract

In the age of coordinated malware distribution and
zero-day exploits security becomes ever more im-
portant. This paper presents secuBT, a safe ex-
ecution framework for the execution of untrusted
binary code based on the fastBT dynamic binary
translator.

secuBT implements user-space virtualization us-
ing dynamic binary translation and adds a system
call interposition framework to limit and guard the
interoperability of binary code with the kernel.

Fast binary translation is a key component to
user-space virtualization. secuBT uses and ex-
tends fastBT, a generator for low-overhead, table-
based dynamic (just-in-time) binary translators.
We discuss the most challenging sources of overhead
and propose optimizations to further reduce these
penalties. We argue for hardening techniques to en-
sure that the translated program cannot escape out
of the user-space virtualization.

An important feature of secuBT is that only
translated code is executed. This ensures code va-
lidity and makes it possible to rewrite individual in-
structions. The system call interposition framework
validates every system call and offers the choice to
(i) allow it, (ii) abort the program, (iii) redirect to
an user-space emulation.

1 Introduction

In a world of increasing software complexity and
diversity it is important to sandbox and virtual-
ize running applications. Staying up-to-date on all
software applications and libraries is hard but nec-
essary. On the other hand patches as well as mal-
ware discovery is reactive. secuBT is a step towards
proactive security and fault detection.

Two interesting scenarios are (i) sandboxing of
server processes, and (ii) execution of untrusted
code. Server daemons that offer an interface to the
Internet are under constant attack. If these dae-
mons are virtualized and restricted to only specific
system calls and parameters then an exploit is un-
able to escalate privileges and execute unintended
code. The second scenario targets plugins and other

downloaded untrusted code that a user would like
to run in a special sandbox. Whenever the pro-
gram issues a system call, the user can decide if
it is allowed or not. The sandbox limits the pos-
sible interactions between the virtualized program
and the operating system. System calls are checked
depending on name, parameters, and call location.

Such a sandbox could be implemented as a kernel
module. This would require additional code that
runs in the kernel itself which poses an additional
security risk. User-space virtualization uses binary
translation to sandbox processes. The virtualiza-
tion layer controls all instructions that can be exe-
cuted by the virtualized process. System calls are
rewritten by the translation system so that an au-
thorization function is executed first. This autho-
rization decides whether a system call (i) is allowed,
(ii) aborted, or (iii) redirected to a sandbox-internal
function that emulates the system call in user-space.
To the virtualized application it appears as if the
system call is executed directly.

We propose a sandbox that is built on a dy-
namic binary translation (BT) system. Using BT
ensures that all executed code is translated first,
and therefore a program cannot escape the sandbox.
If the translator encounters unsafe or invalid code
it aborts the program. This builds a safe execu-
tion framework that validates executed code. The
translator can rewrite individual instructions, e.g.
redirect system calls to handler functions.

Section 2 covers the design of the encapsulation
framework and implementation of the binary trans-
lator fastBT [14]. Section 3 elaborates the security
extension and the system call interposition frame-
work. The system is evaluated in Section 4, followed
by related work and our conclusion.

2 fastBT: Dynamic Binary
Translation

Fast binary translation is the key component to
implement user-space virtualization. The dynamic
translation system checks and verifies every ma-
chine code instruction before it is executed. Static
binary translation does not suffice because it is un-

1

able to detect hidden code or malicious code that
targets the static binary translator itself. Direct
control transfers are translated and redirected to
the code cache. Indirect control transfers are trans-
lated into an online lookup and dispatch to guaran-
tee that only translated branch targets are reached.
The translation system can change, adapt, or re-
move any invalid instruction. Using the translation
system, system calls are rewritten and redirected to
an interposition system.

To limit the overhead of binary translation the
translation process must be fast and must produce
competitive code. This section presents implemen-
tation details of fastBT [14], a fast and flexible bi-
nary translator that is used to implement the exe-
cutable space protection and system call interposi-
tion. An important feature of fastBT is that the
return addresses on the stack remain unchanged.
This adds additional complexity to handle return
instructions as they are translated to a lookup and
an indirect control transfer. An unchanged stack
has the following advantages: (i) the program can
validate and read its own call stack for debugging,
(ii) exception handling uses return addresses to es-
cape to the correct frame, (iii) the program does
not know that it is translated, and (iv) the address
of the code cache is hidden from the program.

2.1 Basic Translator

The translator processes basic blocks of the original
program, places them in the code cache and adds
entries to the mapping table. The mapping table
is used to map between program locations in the
original program and the code cache. This transla-
tion process ensures that the execution flow always
stays in the code cache. If the program is about to
branch to an untranslated block of code then the
translator is invoked to translate that block. The
translated block is then placed in the code cache
and the execution of the program resumes at the
newly translated block in the code cache. See Fig-
ure 1 for an overview of such a generic translator.

Translator

Opcode
table

1'

2'

3'
Trampoline to

translate 4

Code cache

0

1

2 3

4

Original program

3 3'
1 1'
2 2'

Mapping

Figure 1: Runtime layout of the binary translator.

2.1.1 Translation Tables

The basic translation engine is a simple table-based
iterator. When the translator is invoked with a
pointer to a basic block, it first adds a reference to
the mapping table from the original program loca-
tion to the location in the code cache. The iterator
then loops through the basic block one instruction
at a time.

To decode the variable-length x86 instructions
a large multidimensional translation table is con-
structed that encodes all possible combinations of
machine code instructions and parameters. Start-
ing with a base table each byte of the current in-
struction is checked. If the decoding of the instruc-
tion is not finished in the current table, a pointer
redirects to the next table and the decoding process
continues with the next byte. This process is re-
peated until the instruction is completely decoded.

As a next step the instruction and its arguments
are passed to a corresponding action function that
handles the translation of this particular instruc-
tion. Action functions can generate arbitrary code,
alter, copy, or remove the instruction. Generated
code is emitted into the code cache.

The translation process stops at recognizable ba-
sic block (BB) boundaries like branches or return
instructions. Some BB boundaries like backward
jumps are not recognizable, in such a case a part of
the BB will be translated a second time.

At the end of a BB the translator checks if the
outgoing edges are already translated, and adds
jumps to the translated targets. If a target is not
translated, the translator builds a trampoline that
starts the translation engine for the corresponding
BB, and adds a jump to the trampoline.

2.1.2 Predefined Actions

The translator needs different action functions to
support the identity transformation. All safe in-
structions that are executable in user-space are
copied to the code cache. Privileged instructions
(e.g. all instructions that are not allowed to exe-
cute in user-space) are intercepted and the program
is aborted, otherwise the kernel would signal a seg-
mentation fault or general protection fault.

Special care is needed for control instructions.
These are handled by specific action functions that
check the target of the branch instruction. These
action functions emit extra code that gives the illu-
sion as if the original code was executed.

• The call action handler issues code that saves
the correct instruction pointer of the original
location on the stack, but branches into code
that is located in the code cache.

2

• The ret action handler emits code that pops
the return instruction pointer from the stack,
finds the translated target and branches to the
corresponding translated target.

• The indirect jump action handler emits code
for a runtime lookup of the corresponding tar-
get and issues a branch to the translated target.

If the target is not already translated then the ac-
tion function generates a trampoline that translates
the target when it is executed for the first time.

2.1.3 Code Cache

During the execution of a program it is likely that
certain code regions are executed multiple times.
Therefore it makes sense to keep translated code
in a cache for later reuse. As a result code is
only translated once, reducing the overall transla-
tion overhead.

fastBT uses a per thread cache strategy to in-
crease code locality. An additional advantage of
thread local caches is that the action functions can
emit hard-coded pointers to thread local data struc-
tures, otherwise the code would need to call expen-
sive lookup functions.

The combination of the basic translator that
stops at BB boundaries and the design of the code
cache lead to a greedy trace extraction. These
traces are formed as a side effect of the first exe-
cution and can possibly speed up the program.

2.1.4 Mapping Table

The mapping table maps between code locations in
the original program and code locations in the code
cache. The translator adds entries for all translated
basic blocks. An entry consists of two pointers, the
first pointing to the original location, the second
pointing to the translated location.

The hash function used in any lookup function
returns a relative offset into the mapping table.
Adding the result from the hash function to the
base pointer of the mapping table results in the ad-
dress of a table entry. This process is kept simple so
that inlined machine code is able check these entries
efficiently.

2.2 Optimizations

The basic, simple binary translator is able to use
hardcoded references in the code cache for direct
control transfers. The translator must emit an on-
line lookup of the target if the control transfer is
indirect (e.g. indirect jump, indirect call, function
return, or newly translated block), and the target is
not known at translation time. This indirect jump

routine resolves the indirect target, issues a map-
ping table lookup, translates new targets, and redi-
rects the control flow to the specified target.

The execution of these indirect control transfers
sums up to the majority of the overhead introduced
through BT. Different optimization strategies like
function inlining, an inlined lookup and dispatch,
and inlined predictions are used to reduce the over-
head of indirect control transfers.

2.2.1 fastRET

Function returns are indirect control transfers
where the target lies on the top of the stack. The
basic translator calls the indirect jump routine and
handles the return instruction like an indirect jump.

The fastRET optimization translates a return in-
struction into a thread local lookup in the mapping
table and a branch to the translated target without
an additional call.

Using the implementation shown in Figure 2 the
fastRET optimization uses 13 instructions com-
pared to more than 20 instructions if the general
indirect jump routine is used. The fastRET op-
timization has two advantages: (i) no lookup is
needed for pointers to local data structures, they
can be embedded in the code cache, (ii) the code is
inlined in the code cache, and no extra function call
is executed.

pushl %ebx

pushl %ecx

movl 8(%esp), %ebx # load rip

movl %ebx, %ecx

andl HASH PATTERN, %ebx

subl maptbl start(0,%ebx,8), %ecx

jecxz hit

popl %ecx

popl %ebx

pushl tld

call ind jmp

hit:

movl maptbl start+4(0,%ebx,8), %ebx

movl %ebx, tld->ind jump target

popl %ecx

popl %ebx

leal 4(%esp), %esp # adjust stack

jmp *(tld->ind jump target)

Figure 2: A translated return instruction with the
fast return optimization, rip is the return instruc-
tion pointer and tld the pointer to thread local data.

2.2.2 Indirect call prediction

The indirect call prediction caches the last lookup
target and destination (see Figure 3). If the target is

3

the same then the control can be transfered without
a mapping table lookup, otherwise the cache must
be updated. This optimization speculates that the
target does not change often. fastBT uses this op-
timization for indirect jumps relative to a memory
address (e.g. jmp *0x11223344).

cmpl $cached target, (%esp)

je hit tr

pushl target

pushl tld

pushl $addrOfCachedTarget

call indcall fixup

hit tr:

pushl rip

jmp translated target

Figure 3: Translated indirect call instruction with
an included prediction, target is the target of
the call instruction, rip is the return instruction
pointer, and tld the pointer to thread local data.

3 Security Features

A program is secure if the execution of unintended
code is not possible. Unintended code does not
meet the users expectations and executes unin-
tended system calls. If all system calls of an ap-
plication are redirected to an interposition frame-
work and inspected then the program is unable to
execute unintended actions like, e.g., deleting files,
escalating privileges, or spawning processes.

secuBT offers the possibility to inspect system
calls before they are executed. Using this frame-
work malicious code is unable to break out of the
sandbox, even if some unwanted code is executed.
To support this user-space virtualization the under-
lying binary translator must ensure that a program
is not able to escape BT. If only safe instructions
are translated and all system calls are checked then
a program will not be able to escape out of the
virtualization. Unsafe code is caught during the
translation process, and the program is terminated.
Unsafe system calls are caught before they are exe-
cuted and the program is terminated.

The system call interposition framework can be
extended by a policy-based user-space system call
authorization framework [13].

User-space virtualization does not guard against
overwriting data structures in files that are already
mapped to memory.

3.1 Executable Space Protection

Modern processors support a memory management
extension called executable bit. Only code on pages

where this bit is set can be executed. This protec-
tion guards against introduced code in unexecutable
regions like the stack.

secuBT implements such a protection mechanism
on a more precise per-section granularity for regions
defined in the ELF headers. The translator checks
for every memory location before it is translated if
it is in an executable section of any loaded library
or the program itself. The program is terminated
if the target is not in an executable section. This
mechanism protects against code introduced into
non-executable regions like the stack and the heap.

The code regions of the original program are
marked as non-executable and only the code cache
contains executable code. As the user program does
not know the location of the code cache it is unable
to change already emitted code.

3.2 Protecting Internal Data Struc-
tures through mprotect

A translated program is not able to directly dis-
cover addresses of internal data structures of the
binary translator. But because the binary transla-
tor and the user program share the same address
space there is a probabilistic chance that the user
program can change memory locations that belong
to the binary translator.

An explicit protection can be achieved by write-
protecting all memory pages used by the binary
translator. As soon as the binary translator
switches to translated code write-bits are cleared
for all pages used by secuBT. If an untranslated
basic block is translated then the write privileges
are added before the translator is started. These
transitions are controlled by secuBT and make it
impossible for the user program to change emitted
code in the code cache. This extensions adds a lot
of additional mprotect system calls. The mprotect
system calls are responsible for a lot of the transla-
tion overhead but result in a higher level of security.

3.3 System Call Interposition

To be effective an exploit must execute unintended
system calls (e.g., I/O, opening network sockets, ex-
ecuting other programs, and privilege escalation).
A mechanism that restricts the system calls a vir-
tualized program can execute is an effective safe-
guard.

The fastBT framework supports system call
rewriting of sysenter instructions and int 80 in-
structions. Whereas the Linux kernel uses both sys-
tems alongside each other [9].

The system call interposition framework extends
the binary translator and redirects all system calls
to specific user-defined functions. It is possible to

4

define a specific function per system call that checks
the parameters, call stack, and the system call num-
ber and either allows the system call, denies the
system call and aborts the program, or denies the
system call and returns a fake value.

4 Evaluation

This section provides an extensive analysis of the
overhead introduced through the fastBT virtual-
ization and secuBT sandboxing. This overhead
is separated into (i) BT overhead alone, (ii) addi-
tional overhead for syscall validation and executable
space protection, and (iii) full virtualization using
mprotect to guard the internal datastructures from
attacks against the sandbox.

The benchmarks were run on an Ubuntu 9.04 sys-
tem with an E6850 Intel Core2Duo CPU running at
3.00GHz, 2GB RAM, and GCC version 4.3.3.

4.1 Overhead for different security
configurations

Table 1 shows overheads for the different SPEC
CPU2006 benchmarks compared to an untranslated
run. The different configurations are:

fastBT: A configuration without additional secu-
rity features, showing the overhead of the vir-
tualization and binary modification toolkit.

secuBT: This configuration shows the overhead of
secuBT with executable space protection and
system call interposition.

secuBT (full): The last configuration shows full
encapsulation including protection of internal
data structures using explicit memory protec-
tion through mprotect.

The average slowdown for fastBT below 12% is
tolerable. secuBT security extensions do not add
any measurable overhead compared to fastBT. The
full protection mechanism results in an overhead
of 14.41%. The overhead for fastBT and basic se-
cuBT protection for most programs is between 0%
and 10% whereas some benchmarks like 400.perl-
bench, 433.gcc, 453.sjeng, 483.xalancbr, 447.dealII,
and 453.povray result in a higher overhead of 30%
to 67%. secuBT adds static overhead per translated
block and per system call. The SPEC CPU20006
benchmarks have a low number of system calls and
high code reuse which is typical for server appli-
cations. Therefore the secuBT extensions add no
measurable overhead to these programs.

secuBT with full protection leads to more over-
head because the number of system calls increases.

Benchmark fastBT secuBT full sBT

400.perlbench 66.87% 67.70% 72.22%
401.bzip2 4.34% 3.89% 4.19%
403.gcc 32.20% 31.97% 84.81%
429.mcf 0.25% 0.00% 0.25%
445.gobmk 15.71% 15.71% 18.00%
456.hmmer 4.54% 5.51% 5.94%
458.sjeng 36.04% 35.90% 35.76%
462.libquantum 0.98% 0.98% 0.98%
464.h264ref 8.19% 10.21% 10.21%
471.omnetpp 16.53% 15.73% 15.93%
473.astar 5.49% 5.32% 5.16%
483.xalancbmk 30.19% 29.38% 32.35%
410.bwaves 2.35% 2.46% 2.68%
416.gamess -3.50% -2.80% -2.10%
433.milc 2.30% 2.18% 2.54%
434.zeusmp -0.25% -0.25% -0.13%
435.gromacs 0.00% 0.00% 0.00%
436.cactusADM -0.66% 0.00% 0.00%
437.leslie3d 0.00% 0.00% 0.00%
444.namd 0.49% 0.49% 0.49%
447.dealII 46.38% 44.02% 45.11%
450.soplex 4.83% 4.46% 6.69%
453.povray 39.23% 39.78% 41.44%
454.calculix -1.12% -1.12% 3.35%
459.GemsFDTD 1.79% 1.79% 2.68%
465.tonto 11.35% 10.27% 13.51%
470.lbm 0.00% -0.11% 0.00%
482.sphinx3 0.35% 0.95% 1.42%

Average 11.60% 11.59% 14.41%

Table 1: Overhead for different configurations ex-
ecuting the SPEC CPU2006 benchmarks (relative
to an untranslated run). The configurations are
fastBT, secuBT, and secuBT with full memory pro-
tection.

But the overall overhead is low in these benchmarks,
although the translation overhead is a lot higher.
The translation overhead is small compared to the
runtime overhead of the translated program. As
soon as all active code is translated no further mem-
ory protection calls are necessary. For short running
programs with low code-reuse the translation over-
head would be higher.

5 Related Work

Related work to secuBT combines ideas from dif-
ferent fields of research. An important area are sys-
tems that enforce some kind of security policy by
either limiting the instruction set or relying on some
kernel infrastructure.

As secuBT is tightly coupled to the fastBT bi-
nary translator this section covers related work from
binary translation as well.

5

5.1 Enforcing Security

Security can be enforced on many levels. Some of
them are limiting the system calls a program can
use, limiting the instruction set, or using hardware
extension to limit the program.

• The Google Native Client [18] is able to exe-
cute x86-code in a sandbox. Native client uses
techniques similar to software-based fault iso-
lation (SFI) [17] systems. The instruction set
is limited to a save subset of the IA-32 ISA,
making illegal operations impossible. Before
the execution a verifier checks if the program
is valid, then the program is executed without
any additional virtualization. This limits the
possible used instructions, the programs are
linked statically and no dynamic libraries can
be used. Programs must be compiled with a
custom-tailored compiler.

• Janus [10] is a system call interposition frame-
work that uses the Solaris process tracing fa-
cility (ptrace) to allow one user mode process
to filter the system calls of a second process.
This framework builds on kernel support and
has two drawbacks: (i) the traced application
is already in the kernel when it is stopped, this
poses a potential security problem, and (ii) the
overhead of switching between the inspecting
process and the application is high.

• Vx32 [8] implements a user-space sandbox built
on BT that uses segmentation to hide the in-
ternal data structures. Due to the use of seg-
mentation the Vx32 system is limited to 32-
bit code. Interrupts, system calls, and illegal
instructions are translated to traps that call
special handler functions. The proposed BT
results in a high overhead as there are no opti-
mizations for indirect control transfers.

5.2 Binary Translation

Complete system virtualization by QEMU [3] of-
fers full encapsulation, but comes with high over-
head. Other full system virtualization tools like
VMware [7; 6] and Xen [2] rely on kernel support. A
disadvantage of system virtualization is that every
VM is an independent system with its own configu-
ration. From a security and safety perspective the
encapsulation of such an approach is needed with-
out the complexity of individual systems is needed.
secuBT offers user-space virtualization, combining
encapsulation with simple configuration on a single
system.

The three binary translators that are most simi-
lar to fastBT in either architecture or function are
HDTrans, DynamoRIO, and PIN:

• HDTrans [16; 15] is a light-weight, table-based
instrumentation system. A code cache is used
for translated code as well as trace linearization
and optimizations for indirect jumps. HDTrans
resembles fastBT most closely with respect to
speed and implementation, but there are signif-
icant differences in the optimizations for indi-
rect jumps. Additionally HDTrans only covers
a subset of the IA-32 instruction set.

• Dynamo is a dynamic optimization system de-
veloped by Bala et al. [1]. DynamoRIO [4; 5;
11] is the binary-only IA-32 version of Dynamo
for Linux and Windows. The translator ex-
tracts and optimizes traces for hot regions. Hot
regions are identified by adding profiling infor-
mation to the instruction stream. These re-
gions are converted into an IR, optimized and
recompiled to native code. DynamoRIO was
recently acquired by Google and newer versions
are released as open-source.

• PIN [12] is an example of a dynamic instru-
mentation system that exports a high-level in-
strumentation API that is available at run-
time. The system offers an online high-level
interface to all instructions. PIN uses the
user-supplied definition and dynamically in-
struments the running program.

The drawback of these systems is that they were not
designed with security in mind. A binary with spe-
cial crafted instructions is able to escape the binary
translation system and can execute untranslated
code, circumventing the protection mechanisms.

6 Conclusion

We present secuBT, a low overhead binary trans-
lation framework that implements security in user-
space and offers the ability to limit programs in
their use of system calls and privileged instructions.

The secuBT framework uses dynamic binary
translation to support the full IA-32 ISA without
kernel support. Full binary translation escapes dan-
gerous instructions at runtime and interposes sys-
tem calls with an interposition framework.

secuBT combines the advantages of full system
translation without the disadvantages. Applica-
tions are virtualized and encapsulated while using
a shared system image with a single system config-
uration and no additional overhead to run multiple
operating systems.

The source code of the secuBT virtu-
alization framework can be downloaded at
http://nebelwelt.net/projects/secuBT.

6

References

[1] Bala, V., Duesterwald, E., and Baner-
jia, S. Dynamo: a transparent dynamic op-
timization system. In PLDI ’00 (Vancouver,
BC, Canada, 2000), pp. 1–12.

[2] Barham, P., Dragovic, B., Fraser, K.,
Hand, S., Harris, T., Ho, A., Neuge-
bauer, R., Pratt, I., and Warfield, A.
Xen and the art of virtualization. In SOSP ’03
(New York, NY, USA, 2003), pp. 164–177.

[3] Bellard, F. QEMU, a fast and portable dy-
namic translator. In ATEC ’05: Proc. conf.
USENIX Ann. Technical Conf. (Berkeley, CA,
USA, 2005), pp. 41–41.

[4] Bruening, D., Duesterwald, E., and
Amarasinghe, S. Design and implementation
of a dynamic optimization framework for Win-
dows. In ACM Workshop Feedback-directed
Dyn. Opt. (FDDO-4) (2001).

[5] Bruening, D., Garnett, T., and Amaras-
inghe, S. An infrastructure for adaptive dy-
namic optimization. In CGO ’03 (Washington,
DC, USA, 2003), pp. 265–275.

[6] Bugnion, E. Dynamic binary translator with
a system and method for updating and main-
taining coherency of a translation cache. US
Patent 6704925, March 2004.

[7] Devine, S. W., Bugnion, E., and Rosen-
blum, M. Virtualization system including a
virtual machine monitor for a computer with a
segmented architecture. US Patent 6397242.

[8] Ford, B., and Cox, R. Vx32: lightweight
user-level sandboxing on the x86. In
ATC’08: USENIX 2008 Annual Technical
Conference on Annual Technical Conference
(Berkeley, CA, USA, 2008), USENIX Associ-
ation, pp. 293–306.

[9] Garg, M. Sysenter based system call mech-
anism in linux 2.6 (http://manugarg.google-
pages.com/systemcallinlinux2 6.html).

[10] Goldberg, I., Wagner, D., Thomas, R.,
and Brewer, E. A. A secure environment for
untrusted helper applications: Confining the
wily hacker. In Proceedings of the 6th Usenix
Security Symposium (1996).

[11] Hazelwood, K., and Smith, M. D. Man-
aging bounded code caches in dynamic binary
optimization systems. TACO ’06: ACM Trans.
Arch. Code Opt. 3, 3 (2006), 263–294.

[12] Luk, C.-K., Cohn, R., Muth, R., Patil,
H., Klauser, A., Lowney, G., Wallace,
S., Reddi, V. J., and Hazelwood, K. Pin:
building customized program analysis tools
with dynamic instrumentation. In PLDI ’05
(New York, NY, USA, 2005), pp. 190–200.

[13] Payer, M., and Gross, T. secuBT: Enforc-
ing security through user-space process virtu-
alization. Tech. rep.

[14] Payer, M., and Gross, T. Requirements
for fast binary translation. In 2nd Workshop
on Architectural and Microarchitectural Sup-
port for Binary Translation (2009).

[15] Sridhar, S., Shapiro, J. S., and Bungale,
P. P. HDTrans: a low-overhead dynamic
translator. SIGARCH Comput. Archit. News
35, 1 (2007), 135–140.

[16] Sridhar, S., Shapiro, J. S., Northup, E.,
and Bungale, P. P. HDTrans: an open
source, low-level dynamic instrumentation sys-
tem. In VEE ’06 (New York, NY, USA, 2006),
pp. 175–185.

[17] Wahbe, R., Lucco, S., Anderson, T. E.,
and Graham, S. L. Efficient software-based
fault isolation. In SOSP ’93: Proceedings of the
fourteenth ACM symposium on Operating sys-
tems principles (New York, NY, USA, 1993),
ACM, pp. 203–216.

[18] Yee, B., Sehr, D., Dardyk, G., Chen,
J. B., Muth, R., Ormandy, T., Okasaka,
S., Narula, N., and Fullagar, N. Native
client: A sandbox for portable, untrusted x86
native code. IEEE Symposium on Security and
Privacy (2009), 79–93.

7

