Vulnerabilities in Tor: (past,) present, future

Roger Dingledine
The Tor Project
https://www.torproject.org/
Outline

• Crash course on Tor
• Solved/solvable problems
• Tough ongoing issues, practical
• Tough ongoing issues, research
• Future
Tor: Big Picture

- Freely available (Open Source), unencumbered.
- Comes with a spec and full documentation: Dresden and Aachen implemented compatible Java Tor clients; researchers use it to study anonymity.
- 1500 active relays, 200000+ active users, >1Gbit/s.
- Official US 501(c)(3) nonprofit. Eight full-time developers (!), dozens more dedicated volunteers.
- Funding from US DoD, Electronic Frontier Foundation, Voice of America, a French NGO, Google, NLnet, Human Rights Watch, ... you?
Anonymity serves different interests for different user groups.

Anonymity

“It's privacy!”

Private citizens
Anonymity serves different interests for different user groups.

Anonymity

Private citizens

“‘It’s privacy!’”

Businesses

“‘It's network security!’”
Anonymity serves different interests for different user groups.

“Anonymity”

Governments

“It's traffic-analysis resistance!”

Businesses

“It's network security!”

Private citizens

“It's privacy!”
Anonymity serves different interests for different user groups.

- **Governments**
 - “It's traffic-analysis resistance!”

- **Private citizens**
 - “It's privacy!”

- **Blocked users**
 - “It's reachability!”

- **Businesses**
 - “It's network security!”
The simplest designs use a single relay to hide connections.

(example: some commercial proxy providers)
But a single relay (or eavesdropper!) is a single point of failure.
So, add multiple relays so that no single one can betray Alice.
A corrupt first hop can tell that Alice is talking, but not to whom.
A corrupt final hop can tell that somebody is talking to Bob, but not who.
Alice makes a session key with R1
...And then tunnels to R2...and to R3
The basic Tor design uses a simple centralized directory protocol.

- Servers publish self-signed descriptors.
- Authorities publish a consensus list of all descriptors.
- Alice downloads consensus and descriptors from anywhere.
Outline

- Crash course on Tor
- *Tough ongoing issues, practical*
- Tough ongoing issues, research
- Future
Snooping on Exit Relays (1)

• Lots of press last year about people watching traffic coming out of Tor. (Ask your lawyer first...)
• Tor hides your location; it doesn't magically encrypt all traffic on the Internet.
• Though Tor *does* protect from your local network.
Snooping on Exit Relays (2)

- https as a “premium” feature
- Should Tor refuse to handle requests to port 23, 109, 110, 143, etc by default?
- Torflow / setting plaintext pop/imap “traps”
- Need to educate users?
- Active attacks on e.g. gmail cookies?
- Some research on exit traffic properties is legitimate and useful. How to balance?
Who runs the relays? (1)

- At the beginning, you needed to know me to have your relay considered “verified”.
- We've automated much of the “is it broken?” checking.
- Still a tension between having lots of relays and knowing all the relay operators
Who runs the relays? (2)

- What if your exit relay is running Windows and uses the latest anti-virus gadget on all the streams it sees?
- What if your exit relay is in China and you're trying to read BBC?
- What if your exit relay is in China and its ISP is doing an SSL MitM attack on it? (What if China owns a CA?)
Who runs the relays? (3)

• What happens if ten Tor relays show up, all on 149.9.0.0/16, which is near DC?
• “EnforceDistinctSubnets” config option to use one node per /16 in your circuit (Tor 0.1.2.1-alpha, 27 August 2006)
• No more than 2 relays on one IP address (Tor 0.2.0.3-alpha, 29 July 2007)
• How about ASes? IXes? Countries?
Tor Browser Bundle traces

- We want to let you use Tor from a USB key without leaving traces on the host
- “WINDOWS/Prefetch” trace
- Windows explorer's “user assist” registry entry
- Vista has many more?
Application-level woes (1)

• Javascript refresh attack
• Cookies, History, browser window size, user-agent, language, http auth, ...
• Mostly problems when you toggle from Tor to non-Tor or back
• Mike Perry's Torbutton 1.2.0 tackles many of these (30 July 2008)
Some Firefox privacy bugs remain

- No way to configure/spoof timezones
- “Livemarks” / “Live bookmarks” does a lookup over Tor when Firefox starts.
- Client-side SSL certs are messy to isolate (Firefox happily sends them to the remote website even via Tor)
- The TLS ClientHello message in FF2 uses uptime for the “time” variable!
Application-level woes (2)

- Some apps are bad at obeying their proxy settings.
Transparent proxying

- Easy to do in Linux / BSD: iptables/pf, getsockopt()/getsockname(), done.
- Put Tor client in a Linux QEMU running inside Windows. Then intercept outgoing traffic from Windows apps. Or,
- Put Tor client *and* apps inside a Linux QEMU, and launch it from Windows.
Filtering connections to Tor

- By blocking the directory authorities
- By blocking all the relay IP addresses in the directory
- By filtering based on Tor's network fingerprint
- By preventing users from finding the Tor software
Outline

• Crash course on Tor
• Tough ongoing issues, practical
• Tough ongoing issues, research
• Future
Traffic confirmation

- If you can see the flow into Tor and the flow out of Tor, simple math lets you correlate them.
- Defensive dropping (2004)? Adaptive padding (2006)?
Website fingerprinting

- If you can see an SSL-encrypted link, you can guess what web page is inside it based on size.
- Does this attack work on Tor? “maybe”
- Considering multiple pages (e.g. via hidden Markov models) would probably make the attack even more effective.
Clogging / Congestion attacks (1)

- Murdoch-Danezis attack (2005) sent constant traffic through every relay, and when Alice made her connection, looked for a traffic bump in three relays.
- Couldn't identify Alice – just the relays she picked.
Clogging / Congestion attacks (2)

- Hopper et al (2007) extended this to (maybe) locate Alice based on latency.
- Chakravarty et al (2008) extended this to (maybe) locate Alice via bandwidth tests.
- Evans et al (2009?) showed the original attack doesn't work anymore (too many relays, too much noise) – but “infinite length circuit” makes it work again?
Profiling at exit relays

- Tor reuses the same circuit for 10 minutes before rotating to a new one.
- (It used to be 30 seconds, but that put too much CPU load on the relays.)
- If one of your connections identifies you, then the rest lose too.
- What's the right algorithm for allocating connections to circuits safely?
Declining to extend

• Tor's directory system prevents an attacker from spoofing the whole Tor network.
• But your first hop can still say “sorry, that relay isn't up. Try again.”
• Or your local network can restrict connections so you only reach relays they like.
Outline

• Crash course on Tor
• Tough ongoing issues, practical
• Tough ongoing issues, research
• *Future*
Traffic correlation

• It's just going to get better.
• E.g., maybe somebody publishes mrtg graphs or other apparently innocent data, and that turns out to be enough?
• Or smoke ping data for all the relays?
Countries blocking Tor network

- Blocking the website is a great start
- Eventually, they'll block the Tor relays, and bridges will be needed
- Then the arms race for blocking bridge relays will start.
Data retention

• “Data retention” means major ISPs have to remember which customer had which IP address? Sounds innocent enough.

• GPF lawyer says doesn't apply to non-commercial service providers anyway?

• Some modifications we can make to the Tor design to resist logging at ISPs.

• There will be no logging inside Tor.
Last thoughts

- Pretty much any Tor bug seems to turn into an anonymity attack.
- Many of the hard research problems are attacks against all low-latency anonymity systems. Tor is still the best that we know of -- other than not communicating.
- People find things because of the openness and thoroughness of our design, spec, and code. We'd love to hear from you.
Debian RNG flaw

• [Addressed in Tor 0.2.0.26-rc, 13 May 2008]
• 300 out of ~1500 Tor relay identity keys were bad.
• Logged traffic breakable too--if the client was Debian, or if it used only Debian relays!
• Three out of the six v3 dir authority keys were bad. Four would have really sucked.