
Privacy in the semantic web�

Social Networks based on XMPP

Jan Torben Heuer <jan.heuer@uni-muenster.de>

December 13, 2008

1 Introduction

In the last years the static web has moved towards a socially interactive web. Since 2005
we often refer to this as the web2.0 [1]. People collaboratively write articles in online
encyclopedias like Wikipedia1 or self-portray themselves with pro�les in social networks
like Myspace2. Within a social network, members can link with each other in order to
create a personal network of friends. Often, the number of friends is a kind of �social
status� and displayed on a person's pro�le page. According to [2] this community aspect
is one of the reasons why social networks attract so many users.
In current social network applications we see a lack of privacy. If private data is

shared with others across a web based social network then our privacy can be a�ected
on di�erent levels. The minimum privacy requirement is that private data must not be
visible to everyone. Therefore most services provide a simple access control for content.
Flickr for instance supports private or family photo albums. Recently some security issues
arose in social network which allowed users to gain private data of other users. In [3]
has been shown how to get limited control over the computer of Facebook users in order
to perform a denial-of-service attack against another host. The authors also explained
how malicious applications can access a private user-pro�le in order to copy the private
data to a remote server. So another privacy requirement is that data is kept secure �
a trust that our application must also gain, of course. Most important is the trust in
the service provider regarding what he actually does with private information. Besides
explicitly provided information like preferences there are also implicit information from
user tracking � visited pro�les, groups or advertisements. Mostly such data are used for
market analysis and user speci�c advertising. Our privacy is the price we have to pay
in order to use such free services. But the price may be too high. The issue is not the
advertising but the continuous collecting of data. Information that have been gathered
once cannot be reverted. The membership in a discussion group about certain diseases
for example can prevent someone from getting hired if the employer gets this knowledge.

1http://www.wikipedia.org
2http://www.myspace.com

1

Moreover, such information can also cause disadvantages for later generations in case
of genetic diseases. We are the �rst generation in the �information century� and long
term impacts of the ongoing user pro�ling in social networks are not foreseen, yet. Social
networks are a phenomenon which attracts a lot of users, especially users who do not
have the technical knowledge to understand what happens in the background. Or what
is possible with current user tracking software.
Additionally most content in social networks is kept in proprietary formats. There

is no content integration between the existing independent social networks. All have
their own community and neither user-accounts nor friendships can be shared between
the social networks. Ideally data should be exchanged in an open and extensible format
such as the Web Ontology Language. And here we we see the con�ict. We cannot
ensure privacy and ask for interoperability at the same time. On the one hand, an open
exchange of content between di�erent sites makes it easier to collect information about a
user. An exchange of user pro�les between social networks simpli�es the aggregation and
reasoning of hidden information. On the other hand, to ensure privacy protection the
di�erent social networks would have to restrict public access and use proprietary instead
of open formats. This way, the vision of an open, interconnected and interoperable
semantic web[4] won't come true.
Regarding this con�ict between interoperability and privacy we propose an alternative

to traditional server-based social networks. In this paper we describe a distributed social
network architecture and compare it to currently used server based applications. Like in
traditional social networks users create an account which identi�es them in the network.
The users can create personal pro�les and link to others in the network. Our architecture
does not need a central server which stores private data of the users because personal
data are shared directly with linked friends. Our application therefore does not have the
privacy issues of social networks that we identi�ed above.

2 A network architecture based on XMPP

In current web-based applications users connect to and store their (private) information
on central servers. Figure 1(a) illustrates the principle design. The opposite of a client-to-
server network is a peer-to-peer (P2P) network. In P2P networks, each peers are similar,
which means that they can act as a server (data provider) and client (data consumer)
at the same time. There is no central instance that routes the tra�c or knows about all
connected peers. Peer-to-peer technologies [5] are mainly used for anonymous �lesharing
where one peer tries to connect to as many other peers as possible. In contrast, the
authors de�ne a network where peers only communicate with manually selected peers as
a friend-to-friend (F2F) network. We use a F2F network for our application because we
only want communication between clients that trust each other. The authors additionally
point out that a serverless network is not able to guarantee connectivity because clients
are often located in a local network that is connected to the Internet through a router.
In such con�gurations the router acts as a packet �lter (often called �rewall) with NAT
(Network Address Translation). Two peers that are both located behind a NAT router

2

cannot directly contact each other because connections must always be initiated from
inside the local network to the outside (i.e. the Internet). For that reason a public
available message relay is necessary where clients can initially connect to. The extensible
messaging and presence protocol XMPP ([6]) is such a messaging network architecture
for client-to-client communications (see �gure 1(b)).

(a) Client-server architecture: a server
stores the client's data in its database.
Incomming queries are evaluated by the
server.

(b) Messaging network: clients store their
data, the servers are only responsible for
communication. Clients directly query each
other for information.

Figure 1: Di�erences in communication and data location

A XMPP network consists in a set of independent servers. The servers needn't
know each other initially and anyone can set up his own XMPP server. Users regis-
ter at their preferred server and get an user�id which is similar to an e�mail address:
user@server.tld. Two clients which exchanged their addresses (and authorized each
other for communication) can then send messages to each other. The servers only handle
the message routing and presence information (if a user is currently online) but do not
need to know about the concrete information that are exchanged. At the beginning we
argued that server based social networks in the web cannot ensure privacy. Although we
also rely on servers in our architecture their role is di�erent. Servers are only responsible
for transferring messages but needn't know about the message contents.
In order to provide a private message exchange for clients we use the public-private-

key encryption PGP. Messages can be encrypted to protect them against eavesdroppers
and messages can be signed to prevent forgery. This technology is already used in the
XMPP context for encrypting instant messaging but it isn't widely used, yet. There are
two steps which are important in order to establish a really secure connection: At �rst,
a pair of a public and private key has to be created. This can be done automatically
by our application when a new XMPP account is created. Second, public keys have to
be send to friends and their public keys must be veri�ed. If someone pretends to be
a certain person and introduces himself with fake name there won't be a possibility to
automatically verify the identity. Like in other social networks anyone can sign up with
any name. Unless we have a central authority which maintains identities - and we clearly
don't want to have such an institution - people have to manually identify each other.
That means, they have to verify that a public key is really owned by the the person it

3

claims to. If this check isn't done carefully the future communication cannot be assumed
to be secure. Typically, the veri�cation is perfomed by compareing the �ngerprint of the
public key either by telephone or face-to-face. Our application can only support the users
by i.e. asking for a friends �ngerprint but we do not want to include any automation.

3 Data storage and exchange

In the article �The Semantic Web� [4] the authors described their vision about the future
of the web. While the current web is for the people, the semantic web shall allow agents
to read, understand and process the available information in order to support people
in information retrieval and decision making. Although we're still far away from this
vision becoming true, a lot of work has been done in recent years to archive the goal.
The World-wide-web Consortium W3C developed the resource description framework
RDF which is a general tool to model information in a structured way. Information are
written as statements or triples of {Subject, Predicate, Object}, for example �user1
hasName Bob�. The triples can be read by agents and processed by logic-interpreters
(reasoners). Other popular data models are relational databases or XML documents.
While relational databases store data in a tabular structures or XML documents have
a tree structure, triples are graphs. RDF graphs for example do not have a root and
can contain circular referenes. Each statement's subject can also be an object in another
statement, for example �user1 knows user2�.
Ideally, information are stored in a semantic format, distributed over the web and

linked to each other. Today, the web concentrates at some websites. Most web based
social networks do not provide an export of user data or have their own proprietary
format or API. Although this formats are often structured with open standards like
XML their content isn't interoperable. Each social networks de�nes its own structure.
Our goal however is to directly share information between clients without the need to
convert them manually. Also we don't want to bound the user to our application just
because he doesn't get his data out of it. Therefore we use existing RDF schemas to
model the user's information. The main schema is the FOAF vocabulary [7] which is
used to share personal data like name, e-mail address and links to other friends. A graph
of the vocabulary is shown in �gure 2.
As an initial example we implemented a social semantic tagging application. Users

can create their own personal pro�le and bookmark websites. The bookmarks can be
annotated with keywords, so called tags. For this tagging already exists a RDF schema,
the TagOntology [8]. Further extension can de�ne their own schemas and connect it to
the existing ones. If one wants to query information from his friends, i.e. their names
and e-mail addresses or bookmarks for a certain tag he can use SPARQL [9] queries. The
syntax is similar to SQL but for RDF statements instead of relational databases. This
generic query approach allows for an easy retrieval of any resource. Of course, each user
can de�ne which personal data in his database are available to whom.

4

foaf:Agent

foaf:Personknows Literal
surname

Literal

FirstN
am
e

foaf:Image
im

g

foaf:Document

ho
m
ep
ag
e

Figure 2: The classes Agent and Person from the FOAF vocabulary and some properties
as graph. Person instances can reference to other Persons with the knows

property. There are much more properties de�ned, i.e. to describe Jabber or
OpenID accounts.

4 Application

We developed a �rst desktop application in Java for sharing bookmarks with friends.
The latest Java release (Java 6) has a much better cross-platform desktop support than
the releases before, for example �System Tray Icons� and access to the system�default
web browser. Another reason for Java 6 was the Java Webstart technology which allows
for automatic update detection on startup. The application can directly be started from
the website http://www.pace-project.org which has been created for this project.
However we want to stress out that our application is only one possible implementation
of the concept. It might also be interesting to include the functionality in exiting instant
messaging clients. The application can also run as a small server with a web frontend
for the local browser so that it looks familiar to other web-based social networks. The
main reason for an implementation in Java was that most functionalities are already
provided by other projects. The XMPP protocol was implemented by the �Smack API�
from igniterealtime3. PGP security functionalities are provided by the �Bouncy Castle
Crypto APIs�4. For the database engine we use �Sesame� from Aduana5. It is a full-
featured RDF store that directly supports SPARQL queries. In order to let people use
their existing bookmarks we wrote two import plug-ins for Delicious and Bibsonomy. If a

3http://www.igniterealtime.org/projects/smack/index.jsp
4http://www.bouncycastle.org/java.html
5http://www.openrdf.org/

5

Figure 3: Two screenshots of the application. The social friends-graph (left) and a search
result for the tag java (right).

user already has an account for the services he can link his bookmarks in to application.
Other locally running programs can interact with our application in order to trigger

certain actions. The GUI provides access to its API with the integrated HTTP server
jetty6. By clicking the �new Bookmark� button in Firefox for example, a HTTP request
to our application is triggered: http://localhost:30013/api/newBookmark?url=....
The application opens the �new bookmark� window of our application and the currently
displayed URL is �lled in and can be annotated with tags. A similar plug-in also exists for
the KDE web- and �le browser �Konqueror�. The HTTP API can also provide additional
services. Many people for example like to aggregate news in an RSS reader (RSS is a good
example for a widely used RDF-based format). Sites like Delicious provide a �hotlist�
which are the currently most often bookmarked sites. Our application can generate RSS
feeds of the pages that have recently been bookmarked by friends.

5 Challenges and future work

Our application will only work if su�cient clients are online, like other client-based
applications (i.e. for �lesharing or instant messaging). Social networks however will
only be attractive if a certain amount of interesting information are available (pro�les of
friends or bookmarks). Therefore we need a mechanism to cache data in the network.
One possibility is that users can cache pro�les of friends and distribute them while they

6http://www.mortbay.org/jetty/

6

are o�ine. But we have to make sure that neither the privacy of friends is a�ected (by
giving information to the wrong people) nor that con�icts because of di�erent versions
occur. Another future goal of our application came up when we integrated PGP security.
Currently, PGP public-keys are shared over keyservers. All data from this servers can be
downloaded by everyone. There are for example keys, e-mail addresses and a set of users
who signed the key. The singers are possible friends of the keyowner and therefore we can
say that the keyserver's content is one of the �rst social networks[10]. But some people
don't want to expose their information and therefore avoid the keyservers. Nevertheless
keyservers are a convenient way to �nd and exchange public keys. We propose to use our
architecture as a keyserver replacement. PGP keys for E-Mail communication are added
to a user's FOAF pro�le and can be queried by friends only. The application provides a
standard PGP keyserver interface on its default port for the localhost. Other applications
like e-mail programs can then access keys of friends like before because internally the key
search is translated to a SPARQL query in our application.

References

[1] Tim O'Reilly. What is web 2.0: Design patterns and business models for the next
generation of software. Social Science Research Network Working Paper Series,
September 2005.

[2] Adam Mathes. Folksonomies � Cooperative Classi�cation and Communi-
cation Through Shared Metadata. http://www.adammathes.com/academic/

computer-mediated-communication/folksonomies.html, December 2004.

[3] Elias Athanasopoulos, A. Makridakis, Spyros Antonatos, D. Antoniades, Sotiris
Ioannidis, Kostas G. Anagnostakis, and Evangelos P. Markatos. Antisocial net-
works: Turning a social network into a botnet. In Tzong-Chen Wu, Chin-Laung Lei,
Vincent Rijmen, and Der-Tsai Lee, editors, ISC, volume 5222 of Lecture Notes in

Computer Science, pages 146�160. Springer, 2008.

[4] T. Berners-Lee, J. Hendler, and O. Lassila. The semantic web. Scienti�c Amercian,
May 2001.

[5] Michael Rogers and Saleem Bhatti. How to disappear completely: A survey of
private peer-to-peer networks. In 1st International Workshop on Sustaining Privacy

in Autonomous Collaborative Environments (SPACE 2007), Moncton, Canada, July
2007.

[6] Peter Saint-Andre. Extensible messaging and presence protocol (xmpp): Core. Tech-
nical report, IETF proposed standard, RFC 3920, Oct 2004.

[7] Dan Brickley and Libby Miller. FOAF Vocabulary Speci�cation. Namespace docu-
ment, FOAF Project, September 2004.

7

[8] Richard Newman, Danny Ayers, and Seth Russell. Tag ontology. Technical report,
December 2005.

[9] Eric Prud'hommeaux and Andy Seaborne. SPARQL query language for RDF. Tech-
nical report, World Wide Web Consortium, 2005.

[10] Robert H. Warren, Dana Wilkinson, and Mike Warnecke. Empirical Analysis of a

Dynamic Social Network Built from PGP Keyrings, volume 4503/2007 of Lecture
Notes in Computer Science, pages 158�171. Springer Berlin / Heidelberg, April
2008.

8

