
OnionCat – A Tor-based Anonymous VPN

Bernhard R. Fischer

2048R/5C5FFD47 <bf@abenteuerland.at>

December 18, 2008

Abstract

Tor is an anonymizing network. It allows users to
anonymously access Internet services. Its archi-
tecture guarantees that the real IP of users can-
not be revealed in any way. Tor also provides so-
called Hidden Services. Those are services which
are hidden within the Tor network. This means
that not only the user stays anonymous but also
the service (destination). Hidden services have
several benefits but unfortunately they are not
very user-friendly and they have some protocol
restrictions.

OnionCat manages to build a complete IP
transparent VPN based on those hidden services,
provides a simple well-known interface and has
the potential to create an anonymous global

network which could evolve to a feature- and
information-rich network like we know the plain
Internet today.

1 Introduction

Tor is an anonymizing network1 within the In-
ternet consisting of several nodes capable of for-
warding TCP/IP sessions through it thereby hid-
ing the origin at the destination end point. The
location of a user i.e. his IP address is hidden at
the remote site, e.g. the IP address of a user ac-
cessing a web service will not be revealed in the
server’s log files. Instead the IP of a random Tor
exit node appears. An exit node is a Tor node at
which a TCP/IP session leaves the Tor network.

This is a great feature because it improves a
person’s privacy especially if somebody resides

1See the Tor project page www.torproject.org for general
information.

under aggravating circumstances. Unfortunately
Tor is not only used in the “right manner”. Some
one could also missuse it and if done right no-
body will every discover who did wrong because
even for the Tor network itself it’s impossible to
reveal the originating IP – deliberately it’s a de-
sign feature. Always only the IP of the exit node
appears in the public and depending on the law
of the country where the exit node resides in it
could lead to a law-enforced service shutdown or
even something worse.

That’s why people are usually not willing to
run exit nodes.2

1.1 Hidden Services

The counterpart of a user who would like to hide
his location is a service which should be hidden,
i.e. a service which you know that it exists and
you know how to access it but you don’t know
where it is. Basically it could be any type of
service, e.g. a web service.

In plain old Internet this is more or less im-
possible because an IP address can always be
traced back to an Internet provider and finally
to a user or company. Hidden services [2] are
services which exist only within the Tor network
and of course they are also location hidden. That
means they are not identified by an IP address
but by an .onion-URL and the Tor network is
able to find the right path to it but neither the
user nor the Tor network can detect the IP ad-
dress.3

Beside location hiding there is a second great
benefit: connections to hidden services do not

2That’s not the only reason but probably the most im-
portant one.

3Of course only if the service is configured correctly.

1

http://www.torproject.org/


leave the Tor network. No single exit node is
needed and that’s perfect because, as already
mentioned, exit nodes are rare and because of
that they are permanently traffic overloaded
which results in a high latency.

Another benefit is that Tor guarantees end-
to-end encryption from the client to the hidden
service which is not true for connections to the
Internet even when using Tor.4

That’s why the use of hidden services is really
interesting. Providing them increases the usabil-
ity of Tor and the privacy of users and service
providers.

1.2 The Problems

Unfortunately these .onion-URLs look like ran-
dom numbers and characters – and in fact they
are more or less random – which makes them
really hard to remember, even harder than IP
addresses because they have 16 digits.

But who really needs to remember IP ad-
dresses? Everybody uses names today. There is
the domain name system (DNS) which resolves
names to IP addresses. In plain Internet, name
service is one of the most important ones. Nearly
every user and every service uses names instead
of IP addresses while using the network. The
introduction of DNS – a distributed name reso-
lution service – made the Internet more usable
and opened it to a wider community.

But within Tor there is currently no resolving
mechanism available for translation of names to
.onion-URLs. Traditional DNS can not be used
that easy because it is IP-based5 (specifically
the Internet class IN) and hidden services are
.onion-URL based which can not be simply
exchanged with IPs. From the Tor point of view
those URLs are already names. Theoretically,
an approach could be to use canonical names
(CNAME) pointing to .onion-URLs but this
would break authentication. Unlike IP addresses
.onion-URLs provide authentication, i.e. using
the .onion-URL a user can verify that a service
really is the right hidden service and not any
other one who pretends to be the right service.
DNS basically does not interact with services

4Unfortunately many users do not know this fact and
believe that everything gets encrypted just because
they use Tor.

5That’s not a matter of design but a matter of the real
(IP) world.

that are associated with names, i.e. it cannot
provide authentication as it is used for Tor and
the security of users and services.

Even if someone deals with those .onion-URLs
it’s still not easy to use hidden services because
the interface between an application and Tor is
SOCKS [5] – a protocol for proxying TCP/IP.
From a software modularity point-of-view it is a
good idea to use SOCKS because it is a well stan-
dardized interface and many applications sup-
port it. But many do not! And every application
that supports it needs user interaction to setup
the right settings for SOCKS. A user should be
able to use hidden services without any dif-

ferences to regular Internet services.

Furthermore SOCKS version 4 only supports
TCP/IP. There’s no transport for UDP and
other layer 4 protocols. Typically DNS is based
on UDP which is an important protocol but can-
not be used in combination with Tor.

2 Basic Considerations

Based on the previously mentioned considera-
tions we suggest an application interface on

the IP layer. With such an interface every pro-
tocol based on IP should be transportable.

On most operating systems such interfaces are
available and provided by the kernel. On Linux,
*BSD and other Unices there are kernel modules
providing a layer 3 tunnel interface, usually
called TUN device6 but it’s also available on
Darwin (probably because of its BSD code
base) and a similar model is available even on
Windows.

OnionCat shall connect only to hidden ser-
vices. As already mentioned they are addressed
by .onion-URLs which are requested through
SOCKS4a [4] and resolved by Tor itself. Ob-
viously, because .onion is not a valid top level
domain (tld) in Internet DNS.

Unfortunately, if using layer 3 which usually
is IP, there’s no such thing like a host name.
We need a new IP-compatible addressing scheme
for hidden services but this cannot be done by
just setting up a DNS service which resolves
.onion names. It would break the authentication

6It’s similar to the TAP device which is a layer 2 inter-
face.

2



scheme of Tor’s hidden services and it would im-
ply user interaction again to configure a specific
DNS that hosts the .onion tld.

Tor generates a .onion-URL [6] out of the pub-
lic key of hidden services. It’s exactly an 80 bit
wide Base32 encoded string. Those 80 bits are
one half of the SHA-1 hash of the public key.
And that of course is derived by the private key.
That’s why those URLs are strongly related to
the hidden service. We do not want to loose any
of those bits because it would increase the prob-
ability for collision attacks thereby breaking the
authentication scheme again7 and it would deny
reversability.

7 bits

Prefix

1

L

40 bits

Global ID

16 bits

Subnet

64 bits

Interface ID

Figure 1: Unique-local address format.

We use IPv6 addresses as a new addressing
scheme for hidden services. IPv6 addresses are
128 bit wide, that’s large enough for including
80 bits of an .onion-URL. According to RFC5156
[1] we use a network out of the unique-local ad-
dress space. These are reserved for internal use
in networks comparable to those of RFC1918 [7]
of IPv4. As shown in Figure 1 the basic ad-
dress format has a fixed minimum prefix length
of at least 48 bits, additionally variable 16 bits
for subnetting and 64 bits for the interface ID
(host part). We don’t need any subnet so we
add the full subnet part to the interface part re-
sulting in an 80 bits wide host part. The prefix
length for those addresses is 48 bits.

48 bits

FD87:D87E:EB43
80 bits

.onion-URL

Figure 2: OnionCat addressing scheme.

According to RFC4193 [3] we set the “L”-
bit to 1 and generated a global ID thus
resulting in the new unique-local IPv6 prefix
FD87:D87E:EB43::/48 – the OnionCat prefix.
Address translation is easy by Base32-decoding
the .onion-URL and inserting those 80 bits
into the host part of the IPv6 address (see
Figure 2). E.g. decoding 7fd22jhmqgfl45j6.onion

7With time it’s getting even worse because there are
known collisions in SHA-1 yet. [9]

SOCKS4a TOR Proxy

TUN device
IP in/out

TOR Proxy TCP Listen

TUN device
IP in/out

socat

socat

TOR Network

Figure 3: Socat hidden service connection.

leads to 0xf947ad24ec818abe753e. Putting
this together with our OnionCat pre-
fix it results in the IPv6 address
fd87:d87e:eb43:f947:ad24:ec81:8abe:753e.

Based on this addressing scheme we can now
translate .onion-URLs to IPv6 addresses and vice
versa.

OnionCat basically works similar to socat [8].
Socat8 is a relay that handles all kinds of streams
that are associate with a file descriptor (. . . in
Unix everything is a file ;-). It has two ends
each associated with a file descriptor and for-
wards data between them. For our application
specifically interesting is the feature to forward
data between a TUN device on one end and a
SOCKS4a connection at the other end and at
the opposite a TCP listener on one end and a
TUN device again on the other end respectively
(Figure 3). Now you could assign IP addresses
to both ends and your IP-transparent point-to-
point connection is ready. This setup has to be
done manually.

Different to socat OnionCat automatical

connects through Tor based on the .onion-
URL related IPv6 addresses and it is able to
build up point-to-multipoint connections

because of its routing capability (Figure 4). The
appropriate IPv6 address is assigned automati-
cal to the TUN device which creates an entry to
the kernel’s IPv6 routing table. Hence, packets
are forwarded to OnionCat by the kernel without
further interventions.

8It’s also father of the name “OnionCat”.

3



TOR Proxy

TUN device
IP in/out

TUN device
IP in/out

ocat

TOR Network

TOR Proxy

TOR Proxy

ocat

ocat

TUN device
IP in/out

Figure 4: OnionCat connections.

3 OnionCat Implementation

OnionCat is a multi-threaded application which
basically receives packets on the TUN device and
forwards them across the SOCKS4a connection
through Tor and vice versa, once connections
to remote OnionCat hidden services are estab-
lished. Internally it maintains a peer list. Every
peer is associated with an .onion-URL and its
appropriate IPv6 address, the file descriptor of
the TCP session (between OnionCat and Tor),
an idle time value, some counters, and a defrag-
mentation buffer.

Periodically the Socket Cleaner thread (see
Figure 5) checks the idle times of the peers. If
one exceeds the limit it is removed from the list
and the Socket Receiver (see Section 3.2 below)
thread is signalled that the peer list has changed.

The actions taken are different if packets are
received either through the TUN device (out-
bound direction from a local point of view) or
through a TCP session between OnionCat and
the Tor proxy (inbound direction).

3.1 Outbound Direction

Packet reception on the TUN device is handled
by the TUN Receiver thread (Figure 5). It ex-
tracts the destination IPv6 address of the incom-
ing packet and looks up wether a peer with this
address exists in the peer list or not. If so, it
forwards the packet directly to the peer’s file de-
scriptor, updates his idle timer and continues re-
ceiving packets on the TUN device.

If there’s no peer in the peer list it initiates a

new connection by triggering a sleeping SOCKS

Connector thread. The packet itself is queued
for a while and gets forwarded by the Packet De-

queuer thread9 after the peer is ready. Directly
after the packet is queued the TUN Receiver con-
tinues receiving packets on the TUN device.

The SOCKS Connector spawns a new spare
thread and tries to connect to the hidden ser-
vice through the Tor proxy’s SOCKS4a inter-
face. It blocks until the connection is established
by Tor. If it was successful it makes a new en-
try into the peer list, signals the Socket Receiver
that the peer list has changed and terminates. If
the connection failed it just terminates thereby
dropping the request. The SOCKS Connector
threads maintain a list of new peer requests.

3.2 Inbound Direction

Data reception from Tor is done by the Socket

Receiver thread if connections are already estab-
lished. If data is received it is appended to the
defragmentation buffer of the appropriate peer.
Every peer has its own defragmentation buffer. If
the buffer contains at least one complete packet
the source IPv6 address is extracted from the
header and copied into this peer’s address field if
it is still empty (It will be explained shortly why
this could occur). Then it forwards the packet
to the TUN device and deletes it from the de-
fragmentation buffer.

New incoming hidden service connections from
Tor are handled by the Socket Acceptor thread.
On program startup it creates a listening TCP
socket and waits for connections (currently on
default port 8060). Once a connection comes
in it accepts it, creates a new entry in the peer
list and continues accepting connections. The
Socket Receiver is signalled that the peer list has
changed.

At this time it does not know about the origi-
nating address (.onion-URL/IPv6) because those
TCP sessions are always initiated by the local
Tor proxy, hence, its source address is 127.0.0.1
(or ::1). Furthermore, it is just the transport,
OnionCat (and every other hidden service) just
uses the payload of those session. Outbound
packets cannot be sent to this new peer as long
as it is not identified. Identification happens im-

9This thread is not depicted in Figure 5.

4



TOR
Network

Socket
Receiver

TUN
Receiver

Local
OS

SOCKS
Connector

Socket
Acceptor

lookup

init iate
connection

connect

accept

Socket
Cleaner

Peer-
list

create

cleanup

Figure 5: Internal structure.

mediately at reception of the first IPv6 packet
(see above).10

3.3 OnionCat and IPv4

At a first glance it looks easy to do IP11 for-
warding if IPv6 does already work. But as men-
tioned in Section 2 hidden services are addressed
by an 80 bits wide ID which we managed to con-
vert to IPv6 addresses. Unfortunately that’s not
possible with IP addresses because they’re only
32 bits wide. We could strip some bits off the
.onion-URL and pack it into an IP address but
sadly this type of conversion isn’t reversible, but
that’s a requirement.

OnionCat does IP forwarding with a rout-
ing table which represents the glue between
an IP address and an IPv6 address (and an
.onion-URL respectively). Currently we use the
least significant 24 bits of the IPv6 address
and put them into the host part of the pri-
vate network 10.0.0.0/8. The last 24 bits of the
address fd87:d87e:eb43:f947:ad24:ec81:8abe:753e
are 0xbe753e. Translating this to IP using our
method results in 10.190.117.62. This IP address
together with the netmask 255.0.0.0 is also as-
signed to the TUN device and an entry in the
kernel routing table appears.12 All packets with

10This is a known security weakness but we’ll find a so-
lution.

11Subsequently I’ll use the term IP instead of IPv4.
12Obviously, it may overlap other routing entries with

subnets of 10.0.0.0/8 but OnionCat currently is in
early development state and we don’t care at the mo-
ment. We’ll make this configurable in the future.

a destination therein will travel across the TUN
device to the TUN Receiver thread (Figure 5).

The problem that now occurs is that the peer
cannot be looked up in the peer list because
the destination IP address cannot be reversed to
an .onion-URL. As already mentioned, OnionCat
maintains a second list which is a routing table
with destination IP addresses, netmasks, and ap-
propriate IPv6 gateways. On reception of an IP
packet the TUN Receiver looks up an entry in
the routing table and then further looks up the
gateway address in the peer list and continuous
as described in Section 3.1 or drops the packet if
no routing entry exists. This routing table has
to be setup manually.

4 Availability and Application

The source code of OnionCat can be down-
loaded at the current project home page
www.abenteuerland.at/onioncat/. It is released
under the GNU GPLv3 and is in early devel-
opment state at the time of writing this paper.
Currently it runs under Linux Kernels 2.6.x and
2.4.x, FreeBSD 6.x, OpenBSD 4.x, and Mac OS
X 10.4 and 10.5, but maybe also under other
operating systems. It’s written portable as pos-
sible. The most ugly part is porting the TUN
device initialization code (congratulations to the
OpenVPN guys!).

Have a look at our project page for a descrip-
tion on OnionCat usage. We do not maintain a
mailinglist yet, but we plan to do so. Announce-
ments are currently done on the or-talk list.

The goal of what OnionCat is made for is
to recreate the Internet on an anonymous ba-
sis: AnoNet. If everybody – this includes users
and service providers, i.e. people, organizations,
companies, etc., providing services – uses Tor
and OnionCat, this could become reality.

For now it may be used for smaller user groups
which need to exchange data basically with the
same requirements as those using Tor but in
a more transparent or more flexible way in re-
spect to the underlying network protocols. Peo-
ple could setup private meeting rooms, chat re-
lays, or similar services.

Of course, there are also dark sides. With
OnionCat people can also do e.g. file sharing
completely anonymous. But maybe this has a

5

http://www.abenteuerland.at/onioncat/


good side effect: if file sharing is done only within
Tor, the exit nodes will become less overloaded.

5 Conclusion

In this paper we presented a method for mak-
ing Tor’s hidden services more user-friendly and
transparent. This is done by insertion of Onion-
Cat, a layer between client applications and the
Tor proxy thereby lowering the access layer from
TCP to IP. This change in layers also forces an-
other addressing method for which we showed
a deterministic reversible approach. By acting
on the IP layer every protocol beside TCP can
be transmitted without further circumstances
across Tor.

OnionCat creates the major advantage of
using Tor’s hidden services like usual IP

hosts on the Internet. Together with Tor, it
has what it takes to build AnoNet – a perfect
anonymous Internet within the Internet.
This creates the interesting problem of anony-
mous not back-trackable payment methods.

During development and test phase we discov-
ered some problems. OnionCat currently lacks
authentication on incoming connections. It just
uses the first incoming packet for identification.

IPv4 support is not very mature. OnionCat
maintains an own routing table. It would be
more comfortable if it shares the kernel routing
table but we think that this might include porta-
bility issues.

The connection setup to a hidden service could
last very long. Sometimes this takes one to two
minutes. With this kind of transparency that
OnionCat creates, also RTT measurements are
easy, e.g. with the ping command in the sim-
plest case. We observed RTTs between 1 and 30
seconds in the real Tor network13 and unfortu-
nately this seems not to be a matter of OnionCat.

Another problem seems to be that Tor is
based on TCP. The circuits are built of concate-
nated TCP sessions. If creating TCP sessions
through OnionCat it leads to “TCP-over-
(TCP+TCP+. . . +TCP)”. TCP uses algorithms
to dynamically adapt to bandwith availability
and this stack of dynamic systems could lead
to very ugly behavior. Packet transmission

13We maintain a private Tor network in our lab for test
purposes.

sometimes looks like they are travelling through
rubber bands which means that they are deliv-
ered in periodical occurring bulks.

But beside all that problems, we still believe
in OnionCat and Tor and we think that this new
kind of anonymous VPN is a great benefit

for the people on this world.

References

[1] M. Blanchet. Special-Use IPv6 Addresses.
RFC 5156 (Informational), April 2008.

[2] Roger Dingledine, Nick Mathew-
son, and Paul Syverson. Tor: The
Second-Generation Onion Router.
https://www.torproject.org/doc/

[3] R. Hinden and B. Haberman. Unique Lo-
cal IPv6 Unicast Addresses. RFC 4193 (Pro-
posed Standard), October 2005.

[4] Ying-Da Lee. SOCKS 4A: A Sim-
ple Extension to SOCKS 4 Protocol.
http://ftp.icm.edu.pl/packages/socks/-
socks4/SOCKS4A.protocol.

[5] Ying-Da Lee. SOCKS: A proto-
col for TCP proxy across firewalls.
http://ftp.icm.edu.pl/packages/socks/-
socks4/SOCKS4.protocol.

[6] The Tor Project. Tor Rendezvous Spec-
ification. http://www.torproject.org/svn/-
trunk/doc/spec/rend-spec.txt, 2008.

[7] Y. Rekhter, B. Moskowitz, D. Karrenberg,
G. J. de Groot, and E. Lear. Address Allo-
cation for Private Internets. RFC 1918 (Best
Current Practice), February 1996.

[8] Gerhard Rieger. socat - Multipurpose relay.
http://www.dest-unreach.org/socat/, 2007.

[9] Xiaoyun Wang, Yiqun Lisa Yin, and
Hongbo Yu. Finding Collisions in the Full
SHA-1. http://people.csail.mit.edu/yiqun/-
SHA1AttackProceedingVersion.pdf, 2005.

6


	Introduction
	Hidden Services
	The Problems

	Basic Considerations
	OnionCat Implementation
	Outbound Direction
	Inbound Direction
	OnionCat and IPv4

	Availability and Application
	Conclusion

