
An Introduction to New Stream Cipher Designs

Tor E. Bjørstad

University of Bergen, Norway
Email : tor.bjorstad@ii.uib.no

1 What is a stream cipher?

Even with“nothing to hide”, it is very often desirable to protect the privacy of our
data and our communications. The usual way to do this is by using encryption1.
It is safe to say that the Internet as we know it would not exist without strong
crypto – whether it is used to protect remote logins, e-commerce transactions,
the hard disk of your laptop, or something completely different. The goal is
mostly the same in all cases: keeping the data or communications confidential.

Briefly speaking, a symmetric encryption algorithm takes some plaintext data
and a secret key as input, and outputs a ciphertext. The goal of the exercise,
of course, is that anyone who does not know the key, should not be able to
deduce anything useful about the plaintext or the key from the ciphertext, while
anyone who does know the key is able to decrypt and recover the plaintext from
the ciphertext. There are two main classes of symmetric encryption algorithms,
block ciphers and stream ciphers.

Block ciphers are the most well known type of symmetric encryption. Some
famous algorithms are the old Data Encryption Standard (DES) and its replace-
ment, the Advanced Encryption Standard (AES). These ciphers operate, as the
name indicates, on fixed-length data blocks. AES takes 128 bits of plaintext as
input together with a 128-bit secret key, and outputs 128 bits of ciphertext. In
order to encrypt larger amounts of data securely, a chaining mode such as CBC
must be used. Data fragments shorter than the block length usually have to be
padded to the block length, increasing transmission overhead.

Stream ciphers are different. A stream cipher may, very loosely speaking,
be thought of as a cryptographically secure pseudo-random number generator
with some extra bells and whistles. These algorithms take the secret key as
well as a public initialisation vector (IV, sometimes called a nonce) as input2,
and output a stream of random-looking symbols, known as the keystream. The

1It should be emphasised at this point that encryption alone is almost never enough
by itself to build a secure protocol or application. Generally, one should always use a
digital signature or a message authentication code (MAC) to maintain the integrity of
encrypted data. Surprisingly often, it will be possible to attack an encrypted protocol
without integrity checking, by tampering with the data in some particular way. How-
ever, this is a completely different cup of tea and far outside the scope of this short
paper.

2The use of an IV makes it possible to encrypt several data streams without chang-
ing long-term secret keys. However, a given key/IV pair must only be used once.



Stream 
Cipher

Keystream

Key IV

Data Stream Ciphertext Stream

Fig. 1. Schematic representation of encryption with a stream cipher.

keystream symbols are usually either single bits, bytes, or machine words. To
encrypt a data stream, one simply has to exclusive-or (XOR) the data symbols
with the keystream. Decryption is of course the exact opposite, since the XOR
operation is symmetric; when the ciphertext c is computed from the message
m and keystream x as c = m

⊕
x, we also have that m = c

⊕
x. Real-world

examples of stream ciphers include RC4 (used for WEP/WPA, by Bittorrent,
and by SSL, to name a few) A5/1 (GSM telephony) and E0 (Bluetooth), as well
as AES in some modes of operation (notably counter, or CTR-mode).

How does a stream cipher work? Although the specific details of stream ci-
phers vary immensely fro cipher to cipher, there is a certain amount of common
structure. A stream cipher consists of a certain amount of internal state, which
should be at least twice the size of the secret key to prevent certain generic
attacks. Given a key and IV, the algorithm proceeds by a specified number of
initialization steps, in which the key, IV and initial contents of the state are
mixed in a nonlinear fashion. After this, the cipher starts outputting keystream
symbols as a function of the (now sufficiently randomised) state, while continu-
ing to mix and evolve the contents of the state itself. A modern stream cipher
specification should make clear certain usage limits: how many keystream bits
can be generated by a single key/IV pair, and how many IVs can be used before
the secret key itself must be changed.

What are the advantages of stream ciphers over block ciphers? Stream ci-
phers may be faster or have a smaller implementation footprint than compa-
rable block ciphers. They operate more naturally on data of short, variable or
unknown length. Finally, the keystream generation is completely independent of
the plaintext data, and so it may be computed in parallel with or in advance
of the data stream. In general, it is also useful for system designers to have a
reasonable selection of different encryption algorithms to choose between, as this
makes it possible both to select precise performance tradeoffs suitable for a spe-
cific application, and to avoid a cryptographic monoculture where everyone is



using AES and subsequently everyone gets in big trouble if future cryptanalysis
reveals weaknesses in AES.

2 What is a secure stream cipher?

The usual starting assumption for attacks on stream cipher, is that the attacker
has access to large amounts of keystream, generated under a number of different
IVs which may (if necessary) be adaptively chosen by the attacker. In a sense
this is a very generous setting; it is to be hoped that an actual real-world attack
scenario will be (much) less bad. But it corresponds well with Kerckhoff’s second
principle: one always should assume that the enemy knows everything about the
encryption system used, apart from the secret key itself. Conversely, if there
are no attacks that can be applied even in this rather theoretical setting, there
will surely not be any attacks in a more restricted (and possibly more realistic)
situation.

There are two main criteria for the security of a stream cipher with a k-bit key.
Firstly, the attacker should not be able to predict future keystream output by the
cipher, whether this happens by recovering the secret key, recovering the internal
state of the cipher at some point, or otherwise. The attacker can obviously do
this by testing all possible secret keys, so the complexity of a brute force attack
(requiring at most 2k executions of the algorithm) gives a performance baseline
to which any alleged attack should be compared.

Secondly, the attacker should not be able to distinguish keystream from ran-
dom under the given usage limits for the cipher. While a distinguishing attack
is certainly less serious than a full state recovery, it does indicate that the algo-
rithm has some kind of undesirable internal structure. It should be emphasised
that the existence of an “attack” of any kind on a stream cipher, does not mean
that the attack is practical in any way. Rather, it implies that the algorithm is
strictly worse than a hypothetical ideal stream cipher, where the only applicable
attacks are generic attacks such as brute-forcing the key, and the keystream is
truly indistinguishable from random when the key is unknown.

3 What is the current state of the art?

The most widely used stream cipher around is, by far, RC4. Designed by Ronald
Rivest in 1987, it is extremely fast in software and can be implemented in just a
few lines of code. The history of RC4 is actually quite interesting, as the cipher
was originally considered a trade secret by RSA, and only became public knowl-
edge after it was anonymously leaked on the Internet in 1994 [14]. Unfortunately,
the age of RC4 is increasingly starting to show. For one, the cipher specification
does not specify how to use an initialisation vector with the algorithm, which
means that implementors have to be very careful about how they do this if they
want to generate multiple keystreams based on the same long-term secret. More
seriously, it was discovered in 2001 that the RC4 keystream exhibits various sta-
tistical biases that can be used to distinguish it form random and relate it to



the underlying secret key [10], and improved attacks along these lines have also
been found since then. A usual technique to mitigate these attacks is to discard
the first N bytes of the RC4 keystream; a typical value is N = 1024.

These issues imply that RC4 can not be considered (theoretically) secure
by modern standards, as discussed in the previous section. Even though it may
still be possible to use RC4 in a sufficiently secure way by a careful (and lucky)
implementor, the WEP fiasco as well as the recent attack on WPA by Beck
and Tews [2] show that the theoretical weaknesses of RC4 also lead to practical
attacks on protocols in which RC4 is used. From an academic point of view,
certainly, RC4 should not be used for new applications – even though it offers
very attractive performance and ease of implementation from an engineering
point of view, it is simply considered too risky and too difficult to get right.

Unfortunately, the state of other popular stream ciphers is no less dire.
The A5/1 cipher and its variants used in GSM have a completely inadequate
key length of 54 bits, and additional attacks have been found which are faster
than brute force. Similarly, E0 has been broken by cryptanalysts. The European
Union-based NESSIE project [12], which was aimed at evaluating the security of
various cryptographic primitives, did not recommend any stream ciphers in their
final report, because all the submitted algorithms were successfully attacked. Al-
though there do exist various other stream ciphers around that are still unbroken
(notably SNOW 2.0 [13], a tweaked variant of one of the NESSIE ciphers), none
of them have really gained widespread acceptance and recognition outside the
academic community.

The only popular, secure and widespread “stream cipher” that remains is,
in the author’s opinion, AES (or any other secure block cipher, but AES is
after all the standard) operating in counter (CTR) mode. But this yields the
obvious question: is it really not possible to design a secure, special-purpose
stream cipher, which is more efficient than what you get by adapting a block
cipher to the task?

4 What is the eSTREAM project?

The eSTREAM project [9] was launched as part of the EU-funded network of
excellence ECRYPT [8], which ran from 2004 to 2008. This was partly in response
to the dismal showing of the NESSIE stream ciphers, and had a stated project
goal to identify “new stream ciphers that might become suitable for widespread
adoption”.

A call for primitives was put forward in the fall of 2004, and attracted 34 sub-
missions from all over the world. The candidate algorithms were divided in two
categories, or profiles, one for software-oriented algorithms, and one for ciphers
suitable for hardware implementation. The design goals for the two profiles were
somewhat different. Software candidates should offer a key size of at least 128
bits, and provide some significant advantage over the state of the art (i.e. AES-
CTR) with respect to throughput. Candidates for the hardware profile should
outperform AES in restricted environments with respect to relevant parameters



such as gate count, power consumption and speed, and provide a key size of at
least 80 bits.

After three evaluation phases, the eSTREAM project ended in the spring of
2008 with a final portfolio of 8“promising”ciphers, 4 in each profile. One of these,
F-FCSR, was removed from the portfolio in September 2008 after new cryptan-
alytic results were found. It is important to remember that, unlike the previous
AES competition and the current SHA-3 competition, the goal of eSTREAM
was not to develop a new international standard for stream ciphers, but merely
to act as a focus for academic interest, and attempt to identify the best candi-
dates among the various designs. While the different eSTREAM algorithms are
still quite new and untested and new weaknesses may yet be found, the portfolio
can be considered to represent the current state of academic research on stream
ciphers.

The eSTREAM portfolio consists, as of November 2008, of the following seven
stream ciphers:

– HC-128 [15] (software), supporting 128-bit keys.
– Rabbit [6] (software), supporting 128-bit keys.
– Salsa20/12 [5] (software), supporting 128 and 256-bit keys.
– SOSEMANUK [3] (software), supporting 128-256 bit keys.
– Trivium [7] (hardware), supporting 80-bit keys.
– Grain v1 [11] (hardware), supporting 80-bit keys.
– MICKEY v2 [1] (hardware), supporting 80-bit keys.

In the accompanying lecture, the aim of the author is to give a lightning tour
of the eSTREAM portfolio ciphers, emphasising their respective strengths and
weaknesses, and examining how the different algorithms are constructed.

References

1. S. Babbage and M. Dodd. The MICKEY stream ciphers. Lecture Notes
in Computer Science, 4986:191–209, 2008. http://www.ecrypt.eu.org/stream/

mickeypf.html.
2. M. Beck and E. Tews. Practical attacks against WEP and WPA, 2008. http:

//dl.aircrack-ng.org/breakingwepandwpa.pdf.
3. C. Berbain, O. Billet, A. Canteaut, N. Courtois, H. Gilbert, L. Goubin, A. Gouget,

L. Granboulan, C. Lauradoux, M. Minier, T. Pornin, and H. Sibert. SOSE-
MANUK, a fast software-oriented stream cipher. Lecture Notes in Computer Sci-
ence, 4986:98–118, 2008. http://www.ecrypt.eu.org/stream/sosemanukpf.html.

4. D. Bernstein. Notes on the ECRYPT Stream Cipher project (eSTREAM). http:

//cr.yp.to/streamciphers.html.
5. D. Bernstein. The Salsa20 family of stream ciphers. Lecture Notes in Computer

Science, 4986:84–97, 2008. http://www.ecrypt.eu.org/stream/salsa20pf.html.
6. M. Boesgaard, M. Vesterager, and E. Zenner. The Rabbit stream cipher. Lec-

ture Notes in Computer Science, 4986:69–83, 2008. http://www.ecrypt.eu.org/

stream/rabbitpf.html.
7. C. de Cannière and B. Preneel. TRIVIUM. Lecture Notes in Computer Science,

4986:244–266, 2008. http://www.ecrypt.eu.org/stream/triviumpf.html.



8. ECRYPT Network of Excellence in Cryptology. http://www.ecrypt.eu.org/.
9. The eSTREAM project. http://www.ecrypt.eu.org/stream/.

10. S. Fluhrer, I. Mantin, and V. Shoup. Weaknesses in the key scheduling algorithm
of RC4. In Proceedings of SAC 2001, volume 2259 of Lecture Notes in Computer
Science, pages 1–24. Springer–Verlag, 2001.

11. M. Hell, T. Johansson, A. Maximov, and W. Meier. The Grain family of stream
ciphers. Lecture Notes in Computer Science, 4986:179–190, 2008. http://www.

ecrypt.eu.org/stream/grainpf.html.
12. New European Schemes for Signatures, Integrity and Encryption. http://www.

cosic.esat.kuleuven.be/nessie/.
13. T. Johansson P. Ekdahl. A new version of the stream cipher SNOW. In Proceedings

of SAC 2002, volume 2595 of Lecture Notes in Computer Science, pages 47–61.
Springer–Verlag, 2002. http://www.it.lth.se/cryptology/snow/.

14. RC4 algorithm revealed. http://groups.google.com/group/sci.crypt/msg/

10a300c9d21afca0.
15. H. Wu. The stream cipher HC-128. Lecture Notes in Computer Science, 4986:39–

47, 2008. http://www.ecrypt.eu.org/stream/hcpf.html.


