
Just in Time compilers - breaking a VM

Roland Lezuo <roland.lezuo@chello.at>

Peter Molnár <peter.molnar@wm.sk>

November 18, 2007

1 About CACAO

CACAO is a multiplatform Java Virutal Machine featuring a just-in-time
compiler. Although CACAO features an interpreter, by default it works in
JIT-only mode, so all code gets compiled prior to execution. The CACAO
project was started in 1997 as a research project at Vienna University of
Technology. Today the project is fully covered by the GPL v2 license.

2 CACAO Codegenerators

CACAO provides code generators for many platforms: currently code gen-
erators for ALPHA (FreeBSD, Linux), ARM (Linux) i386 (Cygwin, Darwin,
FreeBSD Linux), MIPS (Irix, Linux), POWERPC (Darwin, Linux, NetBSD),
SPARC64 (Linux), x86 64 (Linux) and s390 (Linux) are available. A code
generator has to implement a defined internal interface consisting of a set of
exoported functions and symbols and is linked in statically into the virtual
machine.

3 Java bytecode

The Java compiler does not produce machine code which can be executed
on the host CPU directly but an intermediate representation called bytecode

targeting a virtual machine. There are around 200 bytecode instructions de-
fined in the Java Virtual Machine Specification1 The most notable difference
between java byte code and usual machine code is that bytecode instructions

1http://java.sun.com/docs/books/jvms/second_edition/html/VMSpecTOC.doc.

html

1

Listing 1: Stack operations

i c o n s t 3
i c o n s t 5
iadd

Figure 1: Stack changes

don’t use registers as operands, but operate on a operand stack instead what
leads the notion of a computation model called stack machine.

The program in listing 1 manipulates the stack as shown in figure 1:
the instruction iconst 3 pushes the integer 3 on top of the stack, iconst 5

pushes 5, iadd takes the two topmost elements of the stack, adds them and
pushes the result back. The stack is growing from the bottom to the top.

The operand stack consists of 32 bit wide stack slots. A single stack
slot can accomodate a value of the primitive types boolean, char, byte,

short, int or an object reference. To accomodate a long or double value,
two stack slots are used.

Instructions are variable sized and consist at least of one byte - the opcode
optionally followed by several bytes representing operands embedded in the
instruction itself. The getfield instruction for example is used to retrieve
the value of an object’s field and contains a two byte field specifying the
fields index. The object reference is poped from the stack and the result -
the field’s value - is pushed on the stack.

Arithmetic instructions are typed and special variands are defined for the
various primitive types: (e.g. iadd adds two int whereas ladd adds two
long values).

4 Register allocation

A naive compiler would generate machine code that would map the java
operand stack to a stack located in memory. This is actually the approach
used by the Jikes RVM baseline compiler and the approach kaffe’s JIT used
to use but is suboptimal, because of the property of memory accesses beeing

2

Listing 2: Codegeneration macros

#define M OP3(opcode , y , oe , rc , d , a , b) \
do { \

∗ ((u4 ∗) cd−>mcodeptr) = (((opcode)<<26) | ((d)<<21)\
| ((a)<<16) | ((b)<<11) | ((oe)<<10) | ((y)<<1)\
| (rc)) ; \

cd−>mcodeptr += 4 ; \
} while (0)

#define M IADD(a , b , c) M LADD(a , b , c)
#define M LADD(a , b , c) M OP3(31 , 266 , 0 , 0 , c , a , b)

expensive. CACAO instead allocates the slots of the java operand stack to
CPU registers, for example stack slot 2 to the general purpose register 16.
In the case that there are more stack slots needed than registers available,
stack slots are mapped to memory locations. On RISC plattforms, they need
to be loaded into registers before usage, and stored back afterwards.

5 Code generation macros

The code generator iterates over all instructions of the method to be compiled
and depending on the opcode, translates them into native machine code. The
generated machine code is written to temporary memory and afterwards
copied to an executable memory location. It is generated by macros, so care
has to be taken for side effects of arguments which could be evaluated twice.
To ease maintenance of the code generators, all platforms try to adhere to
naming conventions originally inspired by the alpha architecture. Listing 3
shows the implementation of java’s iadd operation, and addition of two 32
bit signed values on POWERPC64. First, the operands are loaded, then
the macro M IADD is used to emit machine code that adds the values in two
registers and stores the result in a desitnation register, M EXTSW is needed for
sign extension and is platform specific and finally the result is stored in the
destination register. jd and iptr contain a pointer to the state of the JIT
compiler and the currently processed instruction. The implementation of the
macro M IADD is shown in listing 2.

The operands of bytecode instructions are allocated to registers or mem-
ory. On load-store architectures, memory operands need to be loaded into
registers prior to use what is achieved using the functionemit load s1, emit load s2

3

Listing 3: Codegeneration for iadd

case ICMD IADD:
s1 = emi t l o ad s1 (jd , i p t r , REG ITMP1) ;
s2 = emi t l o ad s2 (jd , i p t r , REG ITMP2) ;
d = codeg en r eg o f d s t (jd , i p t r , REG ITMP2) ;
M IADD(s1 , s2 , d) ;
MEXTSW(d , d) ;
em i t s t o r e d s t (jd , i p t r , d) ;
break ;

and emit load s3. In case the operand was allocated to a register, they
simply return the register number, otherwise, code is generated to load the
memory operand into a scatch register and the number of the scratch reg-
ister is returned. The destination register of an operation is retrieved using
the function codegen reg of dst, which may again return a scratch register
for memory destinations and finaly emit store generates code to store the
result in case it belongs to memory. See listing 3 for an example showing the
implementation of the iadd byetcode instruction on POWERPC64.

6 Post compile time code patching

One reason the generated code is written into a buffer is due to unresolved
jumps. Imagine a forward jump in a method wheter the target address
points into code still not generated and the compiler does not know the
exact offset in advance as it depends on the instructions in between. For
that reason a post-pass has been added to the compiler which patches the
code after generation. During machine code generation a function named
codegen add branch ref is responsible for collecting positions of branches
that could not be resolved and associating them with target basic blocks. The
branch instructions are then patched using the machine dependend function
md codegen patch branch to contain the correct offset after the complete
method has been compiled. By using the machine dependent patching func-
tion the post compilation phase can be kept platform independent.

7 Data segment

The generated code makes use of constant values: integer constants, address
constants (function entry addresses, addresses of static members). Some

4

Figure 2: Data segment layout

architectures support immediate values of the native word size, so such values
can be embedded in the instruction flow whike other architectures have a
fairly limited range of immediate operands, so those values need to be placed
into memory. Beacause of this the executable method’s code has a block
of memory prepended called the data segment (see figure 2) holding those
constant values. On most architectures, there is one pv register reserved to
hold the procedure vector - the current method’s entry point. The values
on the data segment can then be loaded relatively to the pv register with
negative offsets, or relatively to the current program counter with negative
offsets.

The data segment of each method always contains a method header. This
is a data structure containing metadata about the method, like a pointer to a
method descriptor, the stack frame size, the exception table, the line number
table (see ?? for details).

8 Runtime code patching - Patchers

In java, classes are loaded by the run-time system only if they are needed. If
generating code for a method that depends on other classes (uses static fields,
calls methods), the runtime system needs information about the referenced
class, and therefore it has to be loaded as well. One attempt called eager

loading consists of loading all those referenced classes at compile time but it
showed to be suboptimal, because at run-time, the code using the referenced
class may actually never be reached. A better attempt is to deffer expensive
class loading to the point, where the code that uses the class is reached. This
is called lazy loading.

For lazy loading, incomplete code that has to be patched at run-time with
the missing information is generated. The first instruction of the imcom-
plete code portion is replaced by a trap instruction and a patcher reference

is created: a datastructure containing data about the missing information
associated with the position of the trap instruction.

5

Figure 3: Patcher assembler output (new)

Consider the example of a getstatic instruction, which loads a static
field of a given class. The class may be unresolved when the bytecode is
translated in which case the runtime system has to load and initialize the
class, resolve the address of the member prior to execution of the generated
code. For this purpose the first instruction of the machine code sequence is
replaced by an illegal instruction. Once it is reached, the operating system
delivers a signal the the virtual machine and control is passed to the regis-
tered signal handler. The signal handler needs to be able to differ patchers
from exceptions, so it first examines the failing instruction, whether is really
corresponds to a patcher call. The handler then looks up the proper patcher
by using the mapping of positions to be patched to patcher references and
invokes. The code generator needs to provide a function called emit trap

capable that generates a trap instrucion.
Figure 3 shows the generated assembler code on the x86 64 architecture:

the illegal instruction (u2da) is generated where patching is needed and once
reached control flows to a signal handler written in C. The disassembler
wrongly interpretes the bytes 15 87 ff ff ff as adc instruction. They are
part of the offset of the mov instruction covered by the ud2a instruction.

A race condition exists when patching the trap instruction in case he
instruction can not be overwritten atomically on multiprocessor machines.
One thread could just patch back the original code, while a different thread
executes exactly this code and comes across a half patched instruction. For
that reason single word instructions are used for trapping, as they can be
written back atomically.

6

9 Compiler invocation

Beacause just-in-time compilation of methods is expensive and accounts to
run-time, CACAO tries to deffer it, simillary as it does for class loading. A
method is normally compiled the first time it is called. To achieve this, when
a class gets loaded, for each method a so called compiler stub is generated.
A compiler stub is a small piece of code, usually a single trap instruction
combined with a pointer to the method’s descriptor. Pointers to compiler
stubs are placed where method entry points would be placed normally: in
the class descriptor and in virtual function tables.

If such a compiler stub is invoked, the trap instruction causes control
to be passed to a signal handler which extracts the method descriptor from
the stub and passes it to the compiler subsystem. The compiler generates
machine code for the method and returns the method’s entry. Then, the
machine code before the call instruction is examined, to determine the method

pointer : the address where the pointer to the stub’s entry was loaded from.
This is a virtual function table entry, the data segment, or an immediate
operand in executable code. This location is then overwritten with the actual
method entry, so that further calls to the method are redirected to the newly
generated machine code.

10 Exceptions

Exceptions are an integral part of the Java language used a lot. Nonetheless
exceptions are rare events and occur irregularly.

Each method has an exception handler table associated. This table de-
scribes the start and end instruction of each exception handler directly cor-
responding to the Java language try clause. When an exception occurs at
some point in the program, a lookup is performed in the exception table.
The type of the occurring exception is compared to the type of each handler
covering the throwing instruction.

If a match can be found the handler is executed, else the exception is
propagated outside the method. For the caller this looks like a throwing
invoke instruction. As the caller of a method is unknown at compile time,
the caller has to be determined at runtime. This is achieved by looking up the
return address which is stored on the stack. The offset is known as CACAO
knows about the stack usage of each method. Stack space is allocated on
method entry and no dynamic allocation is performed.

An operation called ”stack unwinding” is performed whenever an ex-
ception is propagated to its caller. As control flow continues at the invok-

7

ing instruction all callee saved registers have to be restored for each stack
frame unwound. Callee saved register are stored on the method stack when a
method is entered, therefore the restore operation is implemented by loading
these registers from known stack locations.

This process either terminates when an appropriate handler has been
found or the whole stack is unwound in which case the exception is unhandled
and the program will be aborted.

In CACAO no explicit code is generated for calling back the runtime
when an exception occurred but an illegal memory operation is performed.
POSIX compatible operation systems provide a signal handling mechanism
which invokes a function in this case. This signal handler tests if the memory
operation was performed intentionally and if so it calls the exception han-
dling code. In case the memory access took place unintentionally an internal
exception is thrown and the vm aborts.

When native functions have been called they could have thrown an ex-
ception too. Natives can not throw exceptions directly but have to notify the
runtime by setting a flag in the environment. When they return the envi-
ronment is checked for an exception and exception handling code is executed
when needed. Exception handling is complex because natives may call back
into Java code. The stack layout is only known in JIT code, native code has
a different stack layout and stack unwinding would fail when a native frame
is found. Therefore a chained data structure called stackframe info is built
up when invoking natives. Figure 4 illustrates this chaining. Technically
there are no stackframeinfo structures for JIT frames, as this stack layout
is known and contains all needed information already.

11 Bytecode Verification

Because the java virtual machine was designed to provide a sandbox en-
vironment, it can’t just start executing untrusted bytecode. It would be
easy to construct malicious bytecode that if executed would crash the virtual
machine. Therefore all bytecode is subject to verification prior to execu-
tion. Bytecode verification includes basic sanity checks of the class file, type
checking of bytecode instructions, checks for operand stack underflow and
enforcement of access protection as required by the java language.

8

Figure 4: Stackframeinfo chaining with native invocation

12 Problematic byte code instructions

When looking for security problems you should first start by looking at
”strange” behaviour defined in the specification. The Java Virtual Machine
Specification is available online. Chapter 6 ha a list of all bytecode instruc-
tions. A JVM vendor has to implement them acording to their specification.
By looking through that list some strange instruction show up.

• TABLESWITCH, LOOKUPSWITCH The tableswitch instruction is
used to implement the switch/case statement and is an optimization of
the more generic lookuptable instruction. The lookuptable is followed
by possible 232 pairs of integer, address pairs. Tableswitch is followed
by 232 possible addresses. That is quite a number! Espcially when one
also knows that the size of a single method is limited to 0xFFFF bytes
by limitations from the classfile format.

• JSR, RET Another example are the jsr and ret instructions. Their
purpose is to implement the try/finally clause of the Java language.
The jsr instruction does no invoke any methods (despite its name), it
jumps to the finally block and stores the return address on the stack.
The ret instruction fetches the return address from a local variable,
for an intentional asymetry. The bytecode verifier has to treat return
addresses as an additional type to prevent hackers from returning to
an integer value they calculated.

9

This alone are no security problems per se, but they are subtile details
which have to be implemented 100% correct to keep the sandbox tight.

13 Problematic assembler instructions

When translating the byte code into machine code appropiate instruction
have to be selected. There are different approaches for code generators. Some
vendors define a description language and generate the code responsible for
instruction selecting, others implement this by hand. Whatever approach is
taken, the instructions available are determined by the architectur the code
is executed on.

13.1 POWERPC64

The POWERPC64 architecture is an enhancement of the POWERPC ar-
chitecture and offers 64 bit address space and a 32 bit compatibility mode.
All instruction have a fixed 32 bit size. Immediate values are of course even
smaller than 32 bits. As a consequence loading a 64 bit address takes more
than 1 assembler instruction.

l i s 4 , msg@highest # load msg b i t s 48−63 i n to r4 b i t s 16−31
o r i 4 , 4 , msg@higher # load msg b i t s 32−47 i n to r4 b i t s 0−15
r l d i c r 4 , 4 , 32 , 31 # ro ta t e r4 ’ s low word i n to r4 ’ s high word
o r i s 4 , 4 ,msg@h # load msg b i t s 16−31 i n to r4 b i t s 16−31
o r i 4 , 4 ,msg@l # load msg b i t s 0−15 i n to r4 b i t s 0−15

It takes 5 to be exact. When generating code the size of the generated
code is an important factor. Not only for execution speed. And using 5
instruction to load an address (something happening very frequently) can not
be afforded. For that reason relative addressing modes are used whenever
possible. Assuming that register r12 contains a valid base address loading
an 64 bit value may be implemented as short as the next listing shows.

l d 4 ,0 x1234 (12)

This is just one instruction. In CACAO a datasegment is used to store con-
stant values and a register is reserved to point to the start of the datasegment.
So when needing to load an address, a relative addressing load instruction
can be used.

The problem here is that the offset is limited to 13 bits, that is 8192 bytes
or 8 KiB. The interesting question is what happens for bigger offsets? That
depends on the implementation, but it will probably be one of the following
3 cases:

• good: The compiler checks the offset, detects the overflow an emits an
instruction sequence capable of correctly handling the case.

10

• not so good: The offset is trimmed to fit into 13 bit, an integer overflow
occures which can lead to an exploit.

• even worse: The offset is not trimmed. As most code generators OR
together bitfields it is very likely that the instruction will be changed.
This can most likely be exploited.

14 Examples found in CACAO

14.1 PPC64 32 bit interger overflow vulneribility

When loading addresses the offset is truncated to 32 bit (M LLD macro in
codegen.h). This leads to offsets larger than 4 GiB to wrap around and
accessing the datasegment at the beginning. The attacker has full control
over the contents of the datasegment as the content is determind by the
method executed. One way to fill the datasegment is by creating address
and interger constans (ICONST and ACONST bytecode instructions). The
exploit is of theoretical nature as a 4 GiB sized datasegment implies a 4 GiB
sized class file which is not possible.

14.2 PPC64 25 bit integer overflow vulneribility

The POWERPC64 branch instruction takes a 23 bit offset argument, but
needs 4 byte aligned target addresses, which effectivley gives a 25 bit branch-
ing offset. In CACAO conditional branches are not tested correctly for an
overflow and branch addresses are trimmed to fit into 23 bit. An branch
offset of 0x3FFFFFF will be interpreted as -1 and therfore jump backwards
instead of forwards. By jumping backwards the datasegment is targeted
which is in control of an attacker. The size of a method must be around
64 MiB for this explot to work. As java methods may only consist of 65535
instructions (classfile limitation) each bytecode instruction would need to use
1024 bytes of instruction code. There is no byte code instruction using 1024
byte of assembler instructions, so no exploit can be developed targeting this
weakness.

14.3 x86 64 32 bit integer overflow vulneribility

A similar vulneribility has been found for x86 64. But it can not be exploited
by the same argument as above.

11

14.4 All architecture exception handler exploit

In CACAO there are special conventions for propagating the exception object
during stack unwinding. A ATHROW instruction is implemented as follows:
the pointer to the exception object and the faulting program counter are
placed into scratch registers itmp1 and itmp2 respectively and an assembly
language function, asm handle exception is jumped to that performs stack

unwinding. The program counter and exception type are then used to find
an exception handler block which is jumped to. The handler code expects
the register itmp1 to contain the exception object pointer. This approach
makes use of the assumption that the only way to reach an exception handler
is via the stack unwinding process. This is actually always true for compiler
generated bytecode but at bytecode level it is perfectly leagal to directly
jump into an exception handler block without an exception thrown. The
exception handler code then interprets the contents of the scratch register
itmp1 as exception pointer. Because itmp1 is used in arithmetic operations
as scratch register, it contents can easily be controlled and set to an arbitrary
value.

To exploit this vulnerability a virtual method on this arbitrary object
pointer is going to be invoked. When calling an object’s Nth virtual method,
first the pointer to the virtual function table is loaded from offset 0 of the
object pointer. Then, the method’s entry point is loaded from slot N of the
virtual function table. Finally, the method’s entry point is jumped to.

Using arrays, a fake object and a fake virtual function table with all
entries pointing to shell code are constcutred as shown in the source code in
figure 5. To set up the pointers in the arrays a method is needed to get the
address of the first element of a java array. This can easealy be achieved by
abusing of the default toString() implementation which outputs a string
containing the object’s class name and its address in memory. In cacao’s
implementation, an array starts with a fixed-sized header followed by data
elements, so the address of element 0 is calculated by adding a fixed offset
to the array pointer. Now if a virtual function on this fake object is called,
control is passed to the shell code.

12

int addressOf (Object o) {
// e x t r a c t and return address from o . t oS t r i n g ()

}

// Archi t ec ture dependent s i z e o f array header
// F i r s t array element i s at t h i s o f f s e t from array poin t e r
int arrayHeaderSize = 16 ;
// Sh e l l code
byte [] code = { /∗ s h e l l code , n u l l b y t e s a l l owed ∗/ } ;
// Vir tua l func t ion t a b l e wi th 100 s l o t s
// Each element (method entry) po in t s to the s h e l l code
int [] v f t b l = new int [1 0 0] ;
for (int i = 0 ; i < v f t b l . l ength ; ++i)

v f t b l [i] = addressOf (code) + arrayHeaderSize ;
// Object , f i r s t words poin t s to v i r t u a l func t ion t a b l e
int [] obj = new int [1] { addressOf (v f t b l) + arrayHeaderSize) ;
// Object po in t e r has to poin t to element 0 o f ob j
int objPtr = addressOf (obj) + arrayHeaderSize ;

Figure 5: Constructing a fake java object

14.5 16 and 12 bit invoke virtual integer overflow on

PPC32 and S390 exploit

As described in section 14.4, to call a virtual method, two loads are involved:
the load of the virtual function table, and then the load of the method entry
from a specific slot of the virtual function table. The displacement of a
load instruction has a limited range: on i386 and x86 64 it is limited to 32
bits, on ppc to 16 bits, on s390 to 12 bits. If the load of the method entry
is implemented as a single load instruction, the maximal load displacement
limits the number of virtual methods that can be supported by such a design:
231/4 on i386, 231/8 on x86 64, 8192 on powerpc and 4096 on s390. The
question is, what happens if a class happens to contain more virtual methods?
On most achitectures, this case is protected by an assertion. If assertions are
turned off, the displacement of the load will just be trimmed to fit into the
maximal displacement bitsize. That in turn means that, if we call a virtual
method who’s entry fails to get loaded because of the displacement limitation,
a different method will be called.

To exploit this vulnerability, let’s suppose the displacement in the load
instruction is unsigned, and that it can be used to load a maximum of MAX
methods from the virtual function table. A class with MAX virtual meth-
ods is generated, each taking one word sized integer as argument and just
returning that argument followed by two methods with the signatures Object
intToObject(int i) and int objectToInt(Object o). If objectToInt is
called, its entry should be loaded from slot MAX + 1 of the virtual func-
tion table but after trimming the offset, the entry will be loaded from slot

13

1 instead, where a method resides that reinterprets the object reference as
integer and just returns it. This way pointers can be converted to integers
and vice versa, bypassing the type system.

Once this type unsafe “casting” functions are available a fake object is
constructed like in section 14.4 with objectToInt used to get the addresses
of the arrays and intToObject used to “cast” the address of the fake object
to an Object. If calling some virtual method on this object pointer, controll
is passed to the shell code.

14

