
Analysis of 23C3 Sputnik data

Tomasz Rybak
tomasz.rybak@post.pl

Tomasz Rybak tomasz.rybak@post.pl () Analysis of 23C3 Sputnik data 1 / 138

Table of content

1 Sputnik idea

2 Hardware

3 Data format

4 Database

5 Analysis of data
Basic graphs
Rebuilding sequences
Analysis

Tomasz Rybak tomasz.rybak@post.pl () Analysis of 23C3 Sputnik data 2 / 138

Sputnik idea

Sputnik system

System for tracing movement of people in closed space

Each person is wearing tag sending signal

Readers receive signals and send it to aggregating server

Server stores all packets and tries to calculate position of each tag,
using triangulation

It was used during 23C3 and CCC2007

This presentation describes data gathered during 23C3

Tomasz Rybak tomasz.rybak@post.pl () Analysis of 23C3 Sputnik data 3 / 138

Sputnik idea

Web pages

Main page of project http://www.openbeacon.org/

Description of released data
http://wiki.openbeacon.org/wiki/Datamining

Page of Peter Meerwald with some analysis
http://pmeerw.net/23C3 Sputnik/

Parser of log files http://cakelab.org/ kaner/sputnik 01/

My page http://www.bogomips.w.tkb.pl/sputnik.html

Tomasz Rybak tomasz.rybak@post.pl () Analysis of 23C3 Sputnik data 4 / 138

http://www.openbeacon.org/
http://wiki.openbeacon.org/wiki/Datamining
http://pmeerw.net/23C3_Sputnik/
http://cakelab.org/~kaner/sputnik_01/
http://www.bogomips.w.tkb.pl/sputnik.html

Hardware

Transmission details

Usually RFID is passive; tag receives power from reader and is active
only during reading process

This solution limits range of transmission; also transmission occurs
only if reader is present

Sputnik uses active tags (each has own battery) with range up to
10m in buildings

Sputnik uses 2.4GHz range; human body cuts down signal by 50%

Tags send signals with varying strength. It allows for estimating how
far from the reader tag is

25 readers deployed through entire BCC, placed in such way that in
most cases at least two readers see every tag

Having data from few readers allow for estimating of location of tag

Tomasz Rybak tomasz.rybak@post.pl () Analysis of 23C3 Sputnik data 5 / 138

Hardware

USB reader

Device connected to USB; can receive and send Sputnik signals

Described in http://wiki.openbeacon.org/wiki/OpenBeacon USB

Smaller and more useful for individual user that Ethernet reader

Creates device /dev/ttyACM* and behaves as terminal; one can
connect to it (“cu -lttyACM0 -s 115200”) and read received data

Text lines with received data is send to terminal

Format: “ID,Sequence,strength,flags”

Can be controlled by sending commands using the same terminal

Can receive and send RFID packets

Tomasz Rybak tomasz.rybak@post.pl () Analysis of 23C3 Sputnik data 6 / 138

http://wiki.openbeacon.org/wiki/OpenBeacon_USB

Hardware

USB reader usage

USB reader can be used for controlling access to computer

The easies solution is custom script checking presence of tag with
particular ID

More sophisticated uses may require PAM module

Parameters of such module: ReaderID (or device file name), TagID,
UserName

Module returns true if there is tag, false if not

Configuration in /etc/pam.d/login

Sputnik module put into section describing authentication

If “requisite” option is used, no one will login without tag detected by
reader

If module put as “required” and placed after unix module, particular
users login ability may be blocked without tag

Similar to USB PAM example

Tomasz Rybak tomasz.rybak@post.pl () Analysis of 23C3 Sputnik data 7 / 138

Function for checking presence of tag

station = 1

id = int(raw_input("Give me your ID: "))

c.execute("""SELECT time, strength

FROM sputnik.reader WHERE station = %s

AND id = %s AND time > now()-’5 second’::interval""", (station, id,))

found = False strength = 255

for i in c.fetchall():

found = True

if strength > i[1]: strength = i[1]

if not found: print "You are not visible at the computer"

if strength > 0x55: print "You are too far away from the computer"

b = random.randrange(1, 6)

print "Press button exactly %i times." % (b,)

time.sleep(5)

c.execute("""SELECT time, strength, tags

FROM sputnik.reader WHERE station = %s

AND id = %s AND time > now()-’5 second’::interval""", (station, id,))

found = False strength = 255 pressed = False

for i in c.fetchall():

found = True

if strength > i[1]: strength = i[1]

if i[2] != None and len(i[2]) > 1:

if i[2][0] == ’button0’ and int(i[2][1]) == b:

pressed = True

if not found: print "You are not visible at the computer"

if strength > 0x55: print "You are too far away from the computer"

if not pressed: print "You have not pressed button exactly %i times." % (b,)

Data format

Data from 23C3

Data gathered during 23C3 was made available as both XML and
binary files

Both files have own problems

Tomasz Rybak tomasz.rybak@post.pl () Analysis of 23C3 Sputnik data 9 / 138

Data format

XML file

Consisted of “observation” tags with following attributes:

id ID of tag

time

position position of tag; (0, 0, 0) if unknown

direction always (0, 0, 0)

priority always the same value 24

min-distance always 0.0

max-distance always 255.0

observer URL of aggregating station; only one value present in file

observed-object URL of station together with tag ID

Tomasz Rybak tomasz.rybak@post.pl () Analysis of 23C3 Sputnik data 10 / 138

Data format

XML data

Many data entries contain (0, 0, 0) as position; those come from tags
which positions could not be determined

357974 entries, 248426 with known position

Positions of people on all floors are present; but no description of
reading stations

Many periods without data; only bursts of activity logged, for only
few hours a day

According to presentation from 23C3 Sputnik server can have more
than one module processing data

So it is possible that XML data comes from such module, which was
no active all the time

In this case, URL is address of server with this module; so there was
only one module or data from only one module was saved, as there is
only one URL in XML file

I did not use XML file for analysis

Tomasz Rybak tomasz.rybak@post.pl () Analysis of 23C3 Sputnik data 11 / 138

Data format

Binary format according to source code

0-4 timestamp

5-8 reader station IP

9 size of frame (0x10)

10 protocol (0x17)

11 flags (0x02 — button pressed)

12 strength of signal

12-16 sequence number

17-20 Tag ID

21-24 check sum

Tomasz Rybak tomasz.rybak@post.pl () Analysis of 23C3 Sputnik data 12 / 138

Data format

Binary format present in file

0-4 timestamp

5-8 reader station IP

9-12 garbage (used by me to write ID)

13-16 garbage, reversed IP of reader station

17 size of frame (0x10)

18 protocol (0x17)

19 flags (0x02 — button pressed)

20 strength of signal

21-24 sequence number

Tomasz Rybak tomasz.rybak@post.pl () Analysis of 23C3 Sputnik data 13 / 138

Data format

Binary data

11144232 data samples

Missing IDs of tags.

Binary data has extra 8 bytes in file 2006-12-27-13, at byte 0xC4FF8
(806904); those bytes are beginning of some frame; it can be removed
and then data can be processed normally

Repetition in binary data: 65792 repeated readings

Query used to count repeated readings

SELECT time, sequence, station, COUNT(*)
FROM sputnik.sputnik
GROUP BY time, sequence, station
HAVING COUNT(*) > 1;

Tomasz Rybak tomasz.rybak@post.pl () Analysis of 23C3 Sputnik data 14 / 138

Database

Database introduction

Database is intended for holding and operating on large amounts of
data

Created database can be seen as temporal and spatial database

Such databases store information about presence of phenomenas in
space and time

Here I store information about presence of person in place at
particular moment; if this person presses button, it is also saved

Additional characteristics, but connected to space position, as they are
used to calculate it, are strength of signal and readers that noticed it

For additional analysis it could be useful to have table with
information about which readers see which rooms, possibly in more
detailed form, like which reader is inside room, and which is only in
proximity

Scripts for creating tables and loading data into database are on my
web page

Tomasz Rybak tomasz.rybak@post.pl () Analysis of 23C3 Sputnik data 15 / 138

Database

Created tables

I started from one table for both XML and binary data

As it was not suitable, I divided data into more tables

station Describes readers

sputnik base table for storing data; tables with data inherit from it

ccc23 contains binary data from 23C3

ccc23xml contains XML data from 23C3; has additional columns
containing values of attributes from XML file

reader table used to store data received by USB reader

adjacency stores count of readings seen by pairs of readers

room describes lecture rooms

event describes events that took place during 23C3; taken from
Schedule XML file

Tomasz Rybak tomasz.rybak@post.pl () Analysis of 23C3 Sputnik data 16 / 138

Database

Base table for holding data from tags

id

time

sequence value of sequence counter

strength strength of signal

station id of station that received this signal

tags array of data, like pressed button

Tomasz Rybak tomasz.rybak@post.pl () Analysis of 23C3 Sputnik data 17 / 138

Database

XML data table

is like raw data table and also contains:

position position of tag

plane position on the floor

direction direction; currently only (0. 0, 0)

observer

observedobject

priority

mindistance

maxdistance

Tomasz Rybak tomasz.rybak@post.pl () Analysis of 23C3 Sputnik data 18 / 138

Database

Table of rooms

Describes room in which events (lectures) were taking places.

id identifier of room

name name of room: “Saal 1”, “Shelter foo”, . . .

shape path describing room shape. Currently empty column; data
to fill it could be taken from GPS data or from building plans

ymin

ymax

bbox Is it necessary, or better use geometry calculations or
PostGIS?

Tomasz Rybak tomasz.rybak@post.pl () Analysis of 23C3 Sputnik data 19 / 138

Database

Event table

Describes information about events. Populated using XML schedules
published on http://www.ccc.de/

id identifier of event

organizerid

name name of event

place identifier of room event is taking place

description human-readable description

address URL of description of event

start timestamp of beginning moment of event

finish timestamp of end moment of event

Tomasz Rybak tomasz.rybak@post.pl () Analysis of 23C3 Sputnik data 20 / 138

http://www.ccc.de/

Database

Database size

Table with data from binary file takes 700MB

Three indexes were created: for ID, for time, and for sequence

Values stored in time and sequence columns have size of 8 bytes

Each index takes about 250MB

ID is ordinary integer, and takes 4 bytes

Index for it takes about 130MB

Indexes were necessary to have working database

So in result it is big database which grows when changed

Tomasz Rybak tomasz.rybak@post.pl () Analysis of 23C3 Sputnik data 21 / 138

Database

Database maintenance

Finding all possible sequences changes large amount of rows in
database

Estimators statistics soon go out of sync with real data

Vacuuming is not crucial if we have enough hard drive

However statistics are, and they are made by VACUUM ANALYZE

So autovacuum can be used to clean up changed tables

It can analyse very frequently, and vacuum not so often, and can be
set for every table on different parameters (table
pg catalog.pg autovacuum)

As sputnik table is large (11.1M rows) we need to analyse it often.
Analyse ofter 0.5% rows been changed and vacuum after 10% rows
been changed.

Set autovacuum to more aggressive for this table — cost 500, delay 0

Tomasz Rybak tomasz.rybak@post.pl () Analysis of 23C3 Sputnik data 22 / 138

Database

Exporting data

libpq tries to fetch entire result into RAM

When exporting Sputnik data this can be a problem

I was getting “Out of memory” error

Cursor can be used to fetch only few rows at the time

Not fetching entire result is on ToDo list of PostgreSQL in libpq
section

Tomasz Rybak tomasz.rybak@post.pl () Analysis of 23C3 Sputnik data 23 / 138

Analysis of data

Behaviour of system

Tags sends its ID and signal strength

To avoid analysis of signal, transmission is encrypted using XXTEA

If only ID and strength was send, there would be not many different
packets, so it would be easy to disturb or replay transmission

The easiest solution is to add time to signal

Instead of complicating tag with real-time clock, ever increasing
32-bit counter ticking once about every 1.5s to 2.5s was added

This will provide variability of send packets

Server discards packets with sequence number smaller than what was
seen

It will take care of replay attacks

To avoid problems with counter starting from 0 when battery is
changed, each reset (battery out) increments larger word of counter
(adds 0x10000)

So database contains monotonic sequences of counter values

Tomasz Rybak tomasz.rybak@post.pl () Analysis of 23C3 Sputnik data 24 / 138

Analysis of data Basic graphs

Graphs

Graphs like those made by Peter Meerwald

Mine are done using data imported to database, and present slightly
higher numbers, probably because of repeated pings that were in
database

Peter’s programs used hashes, so he had not repetitions

Tomasz Rybak tomasz.rybak@post.pl () Analysis of 23C3 Sputnik data 25 / 138

Figure: Pings read by more than one station (> 1000)

Figure: Number of packets read during one minute

Number of packets read during one minute for sequence
∈< 2 ∗ 65536; 3 ∗ 65536 >

Number of packets read during one minute for sequence
∈< 3 ∗ 65536; 4 ∗ 65536 >

Number of packets read during one minute for sequence
∈< 4 ∗ 65536; 5 ∗ 65536 >

Number of packets read during one minute for sequence
∈< 5 ∗ 65536; 6 ∗ 65536 >

Number of packets read during one minute for sequence
∈< 6 ∗ 65536; 7 ∗ 65536 >

Number of packets read during one minute in XML data

Figure: Number of packets read during one minute including unknown points

Packets read by each station

Id IP address count

2 10.254.2.3 1322696
21 10.254.5.21 880833
3 10.254.2.12 760606

15 10.254.1.6 758782
18 10.254.5.2 596466
14 10.254.4.12 589640
20 10.254.8.14 585443
26 10.254.1.16 570525
5 10.254.1.7 568765
4 10.254.2.10 563488
1 10.254.4.6 542657

16 10.254.1.12 532699
22 10.254.4.11 528187
11 10.254.1.22 494524
10 10.254.1.5 448760
9 10.254.2.5 428565
8 10.254.3.9 376396

24 10.254.3.5 231483
23 10.254.7.14 225075
17 10.254.0.254 187078
6 10.254.3.13 130379

13 10.254.0.7 129144
12 10.254.3.21 54863
25 10.254.0.100 8524

Strength of packets

Strength count

0 182874
85 568413

170 1167287
255 9225658

Scatter plot of some data

Analysis of data Rebuilding sequences

Searching for sequences

Build sequences of consecutive counter numbers, and then attach id
to the each one

Even if rebuilding sequences is possible, original numbers of tags are
lost

Either try to build some initial sequences and then join them

Or treat each packet as separate sequence, and then join them

In my opinion better is to try to find some base sequences and only
then try to join them

First try to search local (small) sequences, as global searching
requires much CPU, RAM, and disk resources

Tomasz Rybak tomasz.rybak@post.pl () Analysis of 23C3 Sputnik data 38 / 138

First attempt of building sequences

SELECT time, extract(’epoch’ from time), sequence
FROM sputnik.sputnik WHERE id IS NULL AND
time BETWEEN %s::TIMESTAMP WITH TIME ZONE
AND %s::TIMESTAMP WITH TIME ZONE+%s::INTERVAL
for i in c.fetchall():

old_e, old_s = int(i[1]), int(i[2])
old_major = old_s/65536
old_minor = old_s%65536
p = []
for j in data:

e, s = int(j[1], int(j[1])
major = s/65536
minor = s%65536
probable = (major == old_major and minor == old_minor+1)

or (major == old_major+1 and minor == 0)
if probable: p.append([e, s])

if len(p) > 0:
print old_e, old_s,
for j in p: print j[0], j[1],

Analysis of data Rebuilding sequences

Finding short-term local sequences

Choose short period of time (10s, 20s, . . .)

Find all consecutive sequences of ticks

Assume that each tick is about 1.5s from another, so increase of time
should go along with increase of ticks

Use linear function to predict growth; coefficient should be between
1.0 and 2.0

So in very short term difference between two ticks will be 1 or 2
seconds

In longer term, there should be N ticks and 1.5N seconds

For now ignore signal strength and seen stations

Tomasz Rybak tomasz.rybak@post.pl () Analysis of 23C3 Sputnik data 40 / 138

Analysis of data Rebuilding sequences

Alternative points in sequences

What if there is more than one matching tick and they cannot be
used together?

For example counter values M and N (M 6= N) at the same time T

Or the same counter value N at moments T0 and T1, where T0 6= T1

We build all alternative sequences and choose the best one:

longest
with the most regular increases (no jumps)
with closest resemblance of original:

Accept with coefficient between 1.25 and 1.75
The longer term, the closer to 1.5 it should be

Should we create function that gives coefficient of the best sequence?
I.e. length + Σ(timediff − 1.5)2?

Or rather create function giving the next possible time and sequence
values? But how to compute when time has started?

Tomasz Rybak tomasz.rybak@post.pl () Analysis of 23C3 Sputnik data 41 / 138

Distance between sequence values

Assumes a <= b
Will not work when there is more than 1 overflow
def GetTickDistance(a, b):

majora = a/65536
minora = a%65536
majorb = b/65536
minorb = b%65536

Inside one minor, or less than minute to overflow
if majora >= majorb or minora >= 65500:

return b-a
else:

return majorb-majora + minorb+1

Analysis of data Rebuilding sequences

Creation of all possible alternative sequences

Build hash of all counter values to list of all times of this value, and
all time values to store all counter values at this moment

Check in increasing order

If found value can be added (time is more than previous, and so is
counter) add to the sequence

If not, start alternatives

Add previous one and current one as two alternatives

For subsequent points, add them to alternatives

If one is found that can be added to all alternatives, add all
alternatives to sequence (to choose one later)

If no, add point to the sub-sequences where it can be added

If there is no such sub-sequences, start new one with this point

Tomasz Rybak tomasz.rybak@post.pl () Analysis of 23C3 Sputnik data 43 / 138

Finding best sequences amongst all created

Sequence with len >= 3

def FindBestSequence(a):

b = max(map(len, a))

c, a = a, []

for i in c:

if len(i) == b: a.append(i)

Find minimal difference between min and max, in case of many alternative sequences

best = i = a[0]

ds = float(i[1][0]-i[0][0])/GetTickDistance(i[0][1], i[1][1])

mini = maxi = ds

for j in range(1, len(i)-1):

ds = float(i[j+1][0]-i[j][0])/GetTickDistance(i[j][1], i[j+1][1])

mini = min(mini, ds)

maxi = max(maxi, ds)

c = (mini-1.5)*(mini-1.5)+(maxi-1.5)*(maxi-1.5)

for i in a[1:]:

ds = float(i[1][0]-i[0][0])/GetTickDistance(i[0][1], i[1][1])

maxi = mini = ds

for j in range(1, len(i)-1):

ds = float(i[j+1][0]-i[j][0])/GetTickDistance(i[j][1], i[j+1][1])

mini = min(mini, ds)

maxi = max(maxi, ds)

d = (mini-1.5)*(mini-1.5)+(maxi-1.5)*(maxi-1.5)

if d < c: best, c = i, d

return best

Analysis of data Rebuilding sequences

Possible approaches in algorithm

Either create sub-sequences by going by time or by ticks

In my opinion those attitudes are equivalent and give the same results

However, on some examples time gives less results

Also, counter values give better result — longer sequences

Should two of them be run and then the best result be chosen?

Tomasz Rybak tomasz.rybak@post.pl () Analysis of 23C3 Sputnik data 45 / 138

Analysis of data Rebuilding sequences

O(N3) algorithm

Sketch of algorithm (leaves 20 . . . 30% of data without id) is:

go through all ticks in short period of time (10s, 20s, 60s)

for each of them, check if another can be added to it’s sequence, i.e.
if it can be described by ∆s = a∆t, 1.0 ≤ a ≤ 2.0

Find the best sequence by choosing the longest possible one, and with
ticks generated by functions which a is the closest to 1.5

This makes O(N2)

If any sequence is found, mark it in database and repeat entire
process ⇒ O(N3)

Tomasz Rybak tomasz.rybak@post.pl () Analysis of 23C3 Sputnik data 46 / 138

O(N3) algorithm

SELECT DISTINCT time, extract(’epoch’ from time), sequence

FROM sputnik.sputnik WHERE id IS NULL AND

time BETWEEN %s::TIMESTAMP WITH TIME ZONE

AND %s::TIMESTAMP WITH TIME ZONE+%s::INTERVAL

a, b, again = 0, 0, True

while again:

again, s = False, []

for i in data:

majort, majors = int(i[1]), int(i[2])

p = [[majort, majors]]

for j in data:

minort, minors = int(j[1]), int(j[2])

dt = minort-majort

ds = GetTickDistance(majors, minors)

if dt > 0 and ds <= dt and dt <= 2*ds:

p.append([minort, minors])

if len(p) > 1:

again = True

r = CreateAllSequencesSeqs(p)

s = FindBestSequence(r)

a += 1

if len(s) > b: b = len(s)

break

if again:

for i in s:

UPDATE sputnik.sputnik SET id = %s

WHERE sequence = %s AND time = to_timestamp(%s)

for j in data:

if i[0] == j[1] and i[1] == j[2]:

data.remove(j)

break

id += 1

Analysis of data Rebuilding sequences

O(N2) algorithm

Gets data from database sorted by tick and time

One step:

Get first tuple from database
Go through rest of the tuples and find all that can be described by
∆s = a∆t, 1.0 ≤ a ≤ 2.0
Find the best sequence using found tuples as building blocks
If found one, remove all blocks (tuples) from data set
If not, remove only first tuple, as it cannot be used in any sequence

One step is O(N) as it goes through all tuples

We do it for each tuple, so algorithm is O(N2)

It looks like it gives the same results as O(N3) one

Tomasz Rybak tomasz.rybak@post.pl () Analysis of 23C3 Sputnik data 48 / 138

O(N2) algorithm

SELECT DISTINCT time, extract(’epoch’ from time), sequence

FROM sputnik.sputnik WHERE id IS NULL AND

time BETWEEN %s::TIMESTAMP WITH TIME ZONE

AND %s::TIMESTAMP WITH TIME ZONE+%s::INTERVAL

ORDER BY sequence, time

a, b = 0, 0

while len(data) > 0:

s, i = [], data[0]

majort, majors = int(i[1]), int(i[2])

p = [[majort, majors]]

for j in data[1:]:

minort, minors = int(j[1]), int(j[2])

dt = minort-majort

ds = GetTickDistance(majors, minors)

if dt >= 0 and ds <= dt and dt <= 2*ds:

p.append([minort, minors])

if len(p) > 1:

r = CreateAllSequencesSeqs(p)

s = FindBestSequence(r)

a += 1

if len(s) > b: b = len(s)

for j in s:

UPDATE sputnik.sputnik SET id = %s

WHERE sequence = %s AND time = to_timestamp(%s)

for k in data:

if j[0] == k[1] and j[1] == k[2]:

data.remove(k)

break

id += 1

else:

data.remove(i)

Function trying to join found sequences

def JoinIDs(c, t, d, period):

main = GetLines(c, t.strftime("%Y-%m-%d %H:%M:%S+01:00"), period)

after = GetLines(c, (t+d).strftime("%Y-%m-%d %H:%M:%S+01:00"), period)

before = GetLines(c, (t-d).strftime("%Y-%m-%d %H:%M:%S+01:00"), period)

for i in sorted(main.keys()):

majort = main[i][’max-time’]

majors = main[i][’max-seq’]

for j in sorted(after.keys()):

minort = after[j][’min-time’]

minors = after[j][’min-seq’]

dt = minort-majort

ds = GetTickDistance(majors, minors)

if ds <= dt and dt <= 2*ds:

print "Can Join"

print "\t", main[i][’id’], main[i][’length’], main[i][’min-time’], main[i][’min-seq’],

print main[i][’max-time’], main[i][’max-seq’]

print "with", ds, dt, float(dt)/ds

print "\t", after[j][’id’], after[j][’length’], after[j][’min-time’], after[j][’min-seq’],

print after[j][’max-time’], after[j][’max-seq’]

Analysis of data Rebuilding sequences

Further improvements

It might be possible to go even to O(N)

It was not implemented so I am not sure if it would work and give the
same results

But pointless as this algorithm gives no useful results

Tomasz Rybak tomasz.rybak@post.pl () Analysis of 23C3 Sputnik data 51 / 138

Analysis of data Rebuilding sequences

Further improvements

It might be possible to go even to O(N)

It was not implemented so I am not sure if it would work and give the
same results

But pointless as this algorithm gives no useful results

Tomasz Rybak tomasz.rybak@post.pl () Analysis of 23C3 Sputnik data 51 / 138

Analysis of data Rebuilding sequences

Problems with local algorithms

Initially I created function to calculate “tick distance”. This function
returned difference if ticks were in the same 64k block, and difference
in blocks otherwise.

However, it lead to sequences (65600, 132000, 512000, . . .), so I
changed it to return ordinary difference of counter values

Unfortunately those algorithms do not create long sequences

They produce many short sequences, 2 - 3 ticks

Of course there are longer sequences, up to 20 ticks for 1 minute, but
those are very infrequent

There is problem with joining those short sequences — gaps are too
big

They could be changed by using knowledge gathered during
developing global algorithms, but I preferred not to return to local
ones

Tomasz Rybak tomasz.rybak@post.pl () Analysis of 23C3 Sputnik data 52 / 138

New distance in sequence counter function

Assumes a <= b
Will not work when there is more than 1 overflow
def GetTickDistance(a, b):

majora = a/65536
minora = a%65536
majorb = b/65536
minorb = b%65536
return b-a

Analysis of data Rebuilding sequences

Global algorithm

Straight lines appear when scatter plot shows about 1 hour of data

Try to draw those lines in database

Calculate inside blocks with the same value of high word of counter
value

Take one starting point, and try to compute slope of line from this
point to all other ones

Sample query calculating slope of lines

SELECT sequence, sequence-65549, time,
extract(’epoch’ FROM time)-1167223491,
(extract(’epoch’ FROM time)-1167221093)::float/
(sequence-65557)::float FROM sputnik.sputnik
WHERE sequence < 70000 AND sequence!=65557
ORDER BY sequence;

Tomasz Rybak tomasz.rybak@post.pl () Analysis of 23C3 Sputnik data 54 / 138

Analysis of data Rebuilding sequences

Global algorithm

Greedy algorithm

Take histogram of all those slopes (in 0.1 buckets) and choose the
largest slope

Take all points that are on the line with coefficient inside ±0.3 range
of slopes

Repeat it for all points that are not yet in some sequence

O(N2)

As it operates on entire course of 23C3 it finds rather long sequences

Only about 4000 points (from 11.1M) were left without sequence

It gives interesting results

Strange coefficients are found: 2.4, 2.5, 0.1, 0.4, 2.9, 3.2, 3.6, 0.5,
9.9, 10.0, 8.1, . . .

Tomasz Rybak tomasz.rybak@post.pl () Analysis of 23C3 Sputnik data 55 / 138

Finding sequences in global manner

def FindIDs(connection, sa, sz, ta, tz, id):

SELECT DISTINCT sequence FROM sputnik.sputnik WHERE id IS NULL

AND sequence BETWEEN %s AND %s ORDER BY sequence

for s in c.fetchall():

s0 = s[0]

SELECT DISTINCT time FROM sputnik

WHERE id IS NULL AND sequence = %s

for t in

t0, hash = t[0], {}

SELECT DISTINCT ON (sequence, time) time, sequence,

(extract(’epoch’ FROM (time-%s)))::float/(sequence-%s)::float

FROM sputnik.sputnik WHERE id IS NULL AND time > %s AND

sequence BETWEEN %s AND %s AND sequence != %s

ORDER BY sequence, time

for i in c.fetchall():

k = int(i[2]*10)

if 0 < k and k <= 100:

hash[k] = hash.get(k, 0)+1

i = c.fetchone()

k = -1.0

if len(hash) > 0:

m = max(hash.values())

for i in sorted(hash.keys()):

if m == hash[i]:

k = float(i)/10.0

break

UPDATE sputnik.sputnik SET id = %s WHERE id IS NULL

AND sequence = %s AND time = %s

UPDATE sputnik.sputnik SET id = %s WHERE id IS NULL AND

sequence BETWEEN %s AND %s AND sequence != %s AND

(extract(’epoch’ FROM (time-%s)))::float/(sequence-%s)::float

BETWEEN %s AND %s

id += 1

return id

Calling a sequence finder

id = (SELECT MAX(id) FROM sputnik.sputnik WHERE id IS NOT NULL)+1
ta = ’2006-12-27 12:59:19+01:00’
tz = ’2006-12-30 15:59:59+01:00’
id = FindIDs(connection, 0, 2*65536, ta, tz, id)
Very large data set, 2924448 rows
id = FindIDs(connection, 131072, 196608, ’2006-12-27 12:59:19+01:00’, ’2006-12-27 18:00:00+01:00’, id)
id = FindIDs(connection, 131072, 196608, ’2006-12-27 18:00:00+01:00’, ’2006-12-28 00:00:00+01:00’, id)
id = FindIDs(connection, 131072, 196608, ’2006-12-28 00:00:00+01:00’, ’2006-12-28 17:00:00+01:00’, id)
id = FindIDs(connection, 131072, 196608, ’2006-12-28 17:00:00+01:00’, ’2006-12-29 00:00:00+01:00’, id)
id = FindIDs(connection, 131072, 196608, ’2006-12-29 00:00:00+01:00’, ’2006-12-29 16:00:00+01:00’, id)
id = FindIDs(connection, 131072, 196608, ’2006-12-29 16:00:00+01:00’, ’2006-12-30 00:00:00+01:00’, id)
id = FindIDs(connection, 131072, 196608, ’2006-12-30 00:00:00+01:00’, ’2006-12-30 15:59:59+01:00’, id)
Very large data set, 2076875 rows
id = FindIDs(connection, 3*65535, 4*65536, ta, tz, id)
Very large data set, 1277488 rows
id = FindIDs(connection, 4*65535, 5*65536, ta, tz, id)
Very large data set, 1016195 rows
id = FindIDs(connection, 5*65535, 6*65536, ta, tz, id)
Very large data set, 620763 rows
id = FindIDs(connection, 6*65535, 7*65536, ta, tz, id)

Figure: Generated sequence; first set, number 1

Figure: Generated sequence; first set, number 3

Generated sequence; first set, number 4

Figure: Generated sequence; first set, number 7

Figure: Generated sequence; first set, number 19

Generated sequence; first set, number 31

Figure: Generated sequence; first set, number 32

Generated sequence; first set, number 41

Generated sequence; first set, number 77

Figure: Generated sequence; first set, number 7205

Figure: Points left without sequence; first set

Figure: Histogram of sizes of generated sequences for the first set

Figure: Histogram of sizes of generated sequences for the first set

Analysis of data Rebuilding sequences

Problems

Rather long running, for entire data set was running for about 72h on
Duron 1.3GHz with 768MB RAM and single HDD IDE 7200RPM

IO-constraint (probably due to my limited RAM)

Maybe clustering of tables could help, but it would be lost after some
updates (PostgreSQL does not try to maintain clustering)

It uses too wide ranges of allowed coefficients

It joins more than one line into one sequence, because of big range of
coefficients. The more distant from the initial point, the more visible
is the problem

Tomasz Rybak tomasz.rybak@post.pl () Analysis of 23C3 Sputnik data 71 / 138

Figure: Coefficients histogram for 10 buckets

Figure: Coefficients histogram for 1000 buckets

Analysis of data Rebuilding sequences

Improvements of global algorithm

Refactoring; splitting activities into functions

Added aggregate function to choose only one tick if there is more
than one at given second

Chosen tick is the closest to ideal line

More buckets in histogram; width 0.001

Restrict histogram to range 1.0 to 5.0

0.001 range of coefficients

Because of very small range of coefficients, ticks close to the starting
point will not be used in generated sequence

Tomasz Rybak tomasz.rybak@post.pl () Analysis of 23C3 Sputnik data 74 / 138

Analysis of data Rebuilding sequences

Grouping function

CREATE OR REPLACE FUNCTION sputnik.guessinit(t TIMESTAMP WITH TIME ZONE, sequence BIGINT, slope DOUBLE PRECISION)

RETURNS VOID

VOLATILE RETURNS NULL ON NULL INPUT SECURITY DEFINER

LANGUAGE ’plpythonu’ AS

$$

GD["time"] = t

GD["sequence"] = sequence

GD["slope"] = slope

$$;

CREATE OR REPLACE FUNCTION sputnik.guessbest(state BIGINT, t TIMESTAMP WITH TIME ZONE, sequence BIGINT)

RETURNS BIGINT

VOLATILE CALLED ON NULL INPUT SECURITY DEFINER

LANGUAGE ’plpythonu’ AS

$$

if (not GD.has_key("time")) or (not GD.has_key("sequence")) or (not GD.has_key("slope")):

return None

if (t is None) or (sequence is None):

return None

plan = plpy.prepare("""

SELECT (extract(’epoch’ FROM ($1::TIMESTAMP WITH TIME ZONE-$2::TIMESTAMP WITH TIME ZONE)))::float/($3::BIGINT-$4::BIGINT)::float AS slope

""", ["timestamptz", "timestamptz", "int8", "int8"])

result = sequence

if state is not None:

r0 = plpy.execute(plan, [t, GD["time"], sequence, GD["sequence"]], 1)

r1 = plpy.execute(plan, [t, GD["time"], state, GD["sequence"]], 1)

if abs(r0[0]["slope"]-GD["slope"]) >= abs(r1[0]["slope"]-GD["slope"]):

result = sequence

else:

result = state

return result

$$;

CREATE AGGREGATE sputnik.guesser (TIMESTAMP WITH TIME ZONE, BIGINT) (

SFUNC = sputnik.guessbest,

STYPE = BIGINT

);

Tomasz Rybak tomasz.rybak@post.pl () Analysis of 23C3 Sputnik data 75 / 138

Histogram function

def Histogram(c, time, sequence, sa, sz):

hash = {}

c.execute("""SELECT DISTINCT ON (time, sequence) time, sequence,

(extract(’epoch’ FROM (time-%s::TIMESTAMP WITH TIME ZONE)))::float/(sequence-%s::BIGINT)::float

FROM sputnik.sputnik WHERE id IS NULL AND

sequence BETWEEN %s::BIGINT AND %s::BIGINT AND

time > %s::TIMESTAMP WITH TIME ZONE AND

sequence > %s::BIGINT""", (time, sequence, sa, sz, time, sequence))

i = c.fetchone()

while i != None:

k = int(i[2]*1000)

if 1000 <= k and k <= 5000:

hash[k] = hash.get(k, 0)+1

i = c.fetchone()

if len(hash) > 0:

m = max(hash.values())

for i in xrange(1000, 5001):

Let’s take the smallest max

if m == hash.get(i, 0):

result = float(i)/1000.0

break

return result, m

else:

return 0.0, 0

Function finding points on line with given slope

def Line(c, time, sequence, slope, margin, sa, sz):

result = [[time, sequence]]

c.execute("""SELECT sputnik.guessinit(%s::TIMESTAMP WITH TIME ZONE,

%s::BIGINT, %s::DOUBLE PRECISION)""", (time, sequence, slope))

c.execute("""SELECT time, sputnik.guesser(time, sequence)

FROM sputnik.sputnik WHERE id IS NULL AND

sequence BETWEEN %s::BIGINT AND %s::BIGINT AND

time > %s::TIMESTAMP WITH TIME ZONE AND

sequence > %s::BIGINT AND

(extract(’epoch’ FROM (time-%s::TIMESTAMP WITH TIME ZONE)))::float/(sequence-%s::BIGINT)::float

BETWEEN %s::float AND %s::float GROUP BY time

ORDER BY time""", (sa, sz, time, sequence, time, sequence, slope-margin, slope+margin))

i = c.fetchone()

while i != None:

result.append([i[0], i[1]])

i = c.fetchone()

return result

Function finding all lines

def FindIDs(connection, sa, sz, id):

c.execute("""SELECT DISTINCT sequence

FROM sputnik.sputnik WHERE id IS NULL AND

sequence BETWEEN %s AND %s

ORDER BY sequence""", (sa, sz))

start = c.fetchall()

for s in start:

s0 = s[0]

c.execute("""SELECT DISTINCT time FROM sputnik.sputnik

WHERE id IS NULL AND sequence = %s""", (s0,))

for t in c.fetchall():

t0 = t[0]

slope, count = Histogram(c, t0, s0, sa, sz)

if slope > 0.0 and count >= 8:

line = Line(c, t0, s0, slope, 000.1, sa, sz)

for i in line:

UPDATE sputnik.sputnik SET id = %s WHERE id IS NULL AND

time = %s::TIMESTAMP WITH TIME ZONE AND

sequence = %s::BIGINT

id += 1

return id

Figure: Generated sequence; second set, number 1

Generated sequence; second set, number 5

Generated sequence; second set, number 6

Figure: Generated sequence; second set, number 19

Generated sequence; second set, number 21

Generated sequence; second set, number 23

Figure: Generated sequence; second set, number 24

Generated sequence; second set, number 28

Generated sequence; second set, number 33

Figure: Generated sequence; second set, number 43

Figure: Generated sequence; second set, number 57

Generated sequence; second set, number 67

Figure: Histogram of sizes of generated sequences for the second set

Figure: Histogram of sizes of generated sequences for the second set

Analysis of data Rebuilding sequences

Remarks on the algorithm

Very slow; crawls after initial burst of activity

Longer running than previous version or algorithm

More buckets in histogram
Changed code updating IDs in database; many individual operations
instead of one bulk update
Grouping for time and using aggregate function
Using pl/Python function

More equal load of CPU and IO subsystem

First generated sequences are big

Later are small, dozen or so points

Maybe in case of small sequences increase width of slope range?

Tomasz Rybak tomasz.rybak@post.pl () Analysis of 23C3 Sputnik data 93 / 138

Analysis of data Rebuilding sequences

Problems with generated sequences

Errors not showing on the graphs, but visible by looking at the raw
data

Problems are present even when grouping and aggregation function
were used

Collinear sequences

Interlaced sequences

Tomasz Rybak tomasz.rybak@post.pl () Analysis of 23C3 Sputnik data 94 / 138

Figure: Interlaced sequences

Figure: Collinear sequences

Figure: Incorrectly joined sequences

Figure: Correctly joined sequence

Analysis of data Rebuilding sequences

New firmware

Released during CCC2007

Ping not once per few seconds, but once per 0.1s

Having two tags and USB reader I was able to perform experiment to
check whether having only full seconds can be spoiling data

I had two sets of data; one with discarded sub-second parts and one
which uses them in calculations of slope

First noticeable differences with slopes were on fourth place after
comma

So there is no difference whether we store only seconds, or also parts
of seconds

However first packets had very different values of slopes

Tomasz Rybak tomasz.rybak@post.pl () Analysis of 23C3 Sputnik data 99 / 138

Analysis of data Rebuilding sequences

Signal strength

4 levels: 0x00, 0x55, 0xaa, 0xff

Cycling through those levels

Old firmware, 23C3:

0x00, 0xff, 0x55, 0xff, 0xaa, 0xff, 0xff, 0xff

New firmware, CCC2007:

0x00, 0x55, 0xaa, 0xff

Tomasz Rybak tomasz.rybak@post.pl () Analysis of 23C3 Sputnik data 100 / 138

Analysis of data Rebuilding sequences

Analysis of signal strength

I was hoping to be able to use signal’s strength to check if this
particular point can be put into sequence

The problem would be in finding starting point of strength cycle for
each sequence

It would be difficult as in old firmware 5/8 (1, 3, 5, 6, 7) of values
were 0xff

But then by analysing source code I discovered that all sequences
start at the same exact point

Analysing data generated by tags, as well as looking at the single
points from 23C3 confirmed this

So only using changing strength is pointless, as it does not differ in
sequences coming from different tags

Tomasz Rybak tomasz.rybak@post.pl () Analysis of 23C3 Sputnik data 101 / 138

Analysis of data Rebuilding sequences

Sigmoid function

As I mentioned first packets have very different values of slopes

This must be taken into consideration when using range to limit
number points to use in line

We need border that first is wide, and then gets narrower; this can be
described by function that will give the smaller border the further
from initial point it is are

http://en.wikipedia.org/wiki/Sigmoid function
1

1+e−t

My version looks like: 0.01 + 0.09
1+e(x−500)/100

At distance 0, border is 0.1, and it is getting smaller, and at 1000 is
0.01, and stays there

When distance is more than bout 70000 FPU exception occurs

Tomasz Rybak tomasz.rybak@post.pl () Analysis of 23C3 Sputnik data 102 / 138

http://en.wikipedia.org/wiki/Sigmoid_function

Sigmoid function

Analysis of data Rebuilding sequences

Station list similarity

It is time to take stations into consideration

Using only list of seen stations, not geometrical data

Function showing similarity between stations

Best in range from 0 to 1 (from 0 to 100%)

Take list of the seen stations and strengths

Compare lists of the stations

If the same, similarity is 1

If different, take percentage of similar stations

Take all stations in A and B, count distinct, and take percentage of
common set

If strengths are different and one is subset of another, assume
similarity 1

When strength is different similarity is number of stations seen in
both cases divided by number of stations seen by weaker one

Tomasz Rybak tomasz.rybak@post.pl () Analysis of 23C3 Sputnik data 104 / 138

Analysis of data Rebuilding sequences

Generating the best sequence

Find all candidate points

Find all conflicting points (such that ¬(T1 > T0 ∧ S1 > S0))

Compare which one is the closest to ideal slope.

Choose the best candidate by locally (previous and next) comparing
stations seen by all points. Choose one that has the best similarity in
seen stations

If similarity is the same, or there is big jump, choose next point with
help of adjacency table; not yet implemented

Of course this will remove people that behaved differently than the
rest of the crowd, nonconformists ;-)

Put the next line into database

Tomasz Rybak tomasz.rybak@post.pl () Analysis of 23C3 Sputnik data 105 / 138

Analysis of data Rebuilding sequences

Changes in algorithm

Point to generate sequences are retrieved using sigmoid border
function with wider range

All retrieved points are used to generate alternative sub-sequences,
and the most similar to the main sequence are chosen

To calculate similarity of sets of seen stations list of such stations
must be received from database

To do this I used aggregate function array accum, from PostgreSQL
documentation; grouped by sequence and time

To avoid having joined lines, line is broken into two if there is
probability that found line can be result of join of two lines

Tomasz Rybak tomasz.rybak@post.pl () Analysis of 23C3 Sputnik data 106 / 138

Similarity of seen stations

def Similarity(a, b):
result = 0.0
station0, strength0 = a
station1, strength1 = b
size0, size1 = len(station0), len(station1)
if strength0[0] > strength1[0]:

same = 0.0
for i in station1:

if i in station0: same += 1
result = same/len(station1)

elif strength0[0] < strength1[0]:
same = 0.0
for i in station0:

if i in station1: same += 1
result = same/len(station0)

else:
result = float(len(set(station0)&set(station1)))/

float(len(set(station0)|set(station1)))
return result

Getting all points that can create line

def Fetch(c, time, sequence, slope, sa, sz):

result = [[time, sequence, slope, 0.0]]

c.execute("""SELECT sputnik.array_accum(station),

sputnik.array_accum(strength)

FROM sputnik.ccc23 WHERE id IS NULL AND

time = %s::TIMESTAMP WITH TIME ZONE AND

sequence = %s::BIGINT""", (time, sequence))

i = c.fetchone()

if i != None:

result[0].append(i[0])

result[0].append(i[1])

i = c.fetchall()

Union of first 100s and the rest

c.execute("""SELECT time, sequence,

(extract(’epoch’ FROM (time-%s::TIMESTAMP WITH TIME ZONE)))::float/(sequence-%s::BIGINT)::float,

0.0, sputnik.array_accum(station), sputnik.array_accum(strength)

FROM sputnik.ccc23 WHERE id IS NULL AND

sequence > %s::BIGINT AND sequence <= %s::BIGINT+100::BIGINT AND

time > %s::TIMESTAMP WITH TIME ZONE AND time <= %s::TIMESTAMP WITH TIME ZONE+’100 second’::INTERVAL

GROUP BY time, sequence

UNION

SELECT time, sequence,

(extract(’epoch’ FROM (time-%s::TIMESTAMP WITH TIME ZONE)))::float/(sequence-%s::BIGINT)::float,

0.0, sputnik.array_accum(station), sputnik.array_accum(strength)

FROM sputnik.ccc23 WHERE id IS NULL AND

sequence BETWEEN %s::BIGINT AND %s::BIGINT AND

time > %s::TIMESTAMP WITH TIME ZONE AND

sequence > %s::BIGINT AND

(extract(’epoch’ FROM (time-%s::TIMESTAMP WITH TIME ZONE)))::float/(sequence-%s::BIGINT)::float

BETWEEN %s::float-sputnik.BorderWidth(sequence-%s) AND %s::float+sputnik.BorderWidth(sequence-%s)

GROUP BY time, sequence ORDER BY time""", (time, sequence, sequence, sequence, time, time, time, sequence, sa, sz, time, sequence, time, sequence, slope, sequence, slope, sequence))

i = c.fetchone()

while i != None:

result.append([i[0], i[1], i[2], i[2]-result[-1][2], i[4], i[5]])

i = c.fetchone()

return result

Calculating all possible sequences from points

def Lines(data):
result = [] candidate = []
for i in data:

num = 0
for j in candidate:

if i[0] > j[-1][0] and i[1] > j[-1][1]:
num += 1

if len(candidate) == num:
if len(candidate) == 1: result.extend(candidate[0])
elif len(candidate) > 1: result.append(candidate)
candidate = [[i]]

else:
for j in candidate:

if i[0] > j[-1][0] and i[1] > j[-1][1]:
j.append(i)

if 0 == num: candidate.append([i])
Add last alternative

if len(candidate) == 1: result.extend(candidate[0])
elif len(candidate) > 1: result.append(candidate)
return result

Choosing the best line from all alternatives

def Line(lines):

result = []

for i in xrange(len(lines)):

if type(lines[i][0]) != type([]): result.append(lines[i])

else: alternatives = []

if len(result) > 0:

for j in lines[i]:

if j[0][0] > result[-1][0] and j[0][1] > result[-1][1]: alternatives.append(j)

else: alternatives = lines[i]

scores = [0] * len(alternatives)

sizes = map(lambda x: len(x), alternatives)

best = max(sizes)

for j in xrange(len(alternatives)):

if sizes[j] == best: scores[j] += 1

stationsa = map(lambda x: Similarity((result[-1][4], result[-1][5]), (x[0][4], x[0][5])), alternatives)

Find best alternative for stations in the beginning

if i+1 < len(lines) and type(lines[i+1][0]) != type([]):

stationsz = map(lambda x: Similarity((x[-1][4], x[-1][5]), (lines[i+1][4], lines[i+1][5])), alternatives)

Find best alternative for stations in the end

slopesa = map(lambda x: abs(alternatives[x][0][3]-result[-1][3]), xrange(len(alternatives)))

Find best alternative for slopes in the beginning

if i+1 < len(lines) and type(lines[i+1][0]) != type([]):

slopesz = map(lambda x: abs(alternatives[x][0][3]-lines[i+1][3]), xrange(len(alternatives)))

Find best alternative for slopes in the end

Find the best alternative:

best = max(scores)

for j in xrange(len(alternatives)):

if scores[j] == best:

result.extend(alternatives[j])

break

Count slope deltas once more, for final line proposal

slope = result[0][2]

for i in result:

i[3] = i[2]-slope

slope = i[2]

return result

Function returning probability of break

def Break(a, b, c, d, slope):

result = 0.0

SlopeDiff = 10.0

SlopeTrigger = 0.01

CounterDiff = 100

TimeDiff = datetime.timedelta(0, 120)

StationSimilarity = 0.5

if abs(c[3]) > SlopeTrigger:

if abs(c[3]) > abs(b[3])*SlopeDiff: result += 1.0

if abs(c[3]) > abs(d[3])*SlopeDiff: result += 1.0

Time is more intuitive that sequence counter

Also I do not have to think about line coefficient

if c[1] - b[1] > CounterDiff: result += 1.0

if c[0] - b[0] > TimeDiff: result += 1.0

if Similarity((b[4], b[5]), (c[4], c[5])) < StationSimilarity: result += 1.0

SlopeAB = float((b[0]-a[0]).seconds)/(b[1]-a[1])

SlopeBC = float((c[0]-b[0]).seconds)/(c[1]-b[1])

SlopeCD = float((d[0]-c[0]).seconds)/(d[1]-c[1])

Slopes should be similar to each other and to the main slope

if slope-1.0 <= SlopeAB and SlopeAB <= slope+1.0 and (SlopeBC < slope-1.0 or slope+1.0 < SlopeBC):

result += 1.0

if slope-1.0 <= SlopeCD and SlopeCD <= slope+1.0 and (SlopeBC < slope-1.0 or slope+1.0 < SlopeBC):

result += 1.0

return result/6.0

Function creating all lines

def FindIDs(connection, sa, sz, id):

c.execute("""SELECT DISTINCT sequence FROM sputnik.ccc23 WHERE id IS NULL AND

sequence BETWEEN %s AND %s ORDER BY sequence""", (sa, sz))

for s in c.fetchall():

s0 = s[0]

c.execute("""SELECT DISTINCT time FROM sputnik.ccc23

WHERE id IS NULL AND sequence = %s""", (s0,))

for t in c.fetchall():

t0 = t[0]

slope, count = Histogram(c, t0, s0, sa, sz)

if slope > 0.0 and count >= 8:

data = Fetch(c, t0, s0, slope, sa, sz)

lines = Lines(data)

line = Line(lines)

for i in xrange(len(line)):

skip = False

if len(line[i][4]) != len(line[i][5]):

print "Error in size of ", line[i]

skip = True

s = line[i][5][0]

for j in line[i][5]:

if j != s:

print "Error in strength of ", line[i]

skip = True

if skip:

break

UPDATE sputnik.sputnik SET id = %s WHERE id IS NULL AND

time = %s::TIMESTAMP WITH TIME ZONE AND sequence = %s::BIGINT

if i > 0 and i < len(line)-2:

b = Break(line[i-1], line[i], line[i+1], line[i+2], slope)

if b > 0.5:

id += 1

print "Break here, new id ", id, b

id += 1

return id

Figure: Generated sequence; third set, number 3

Figure: Generated sequence; third set, number 38

Generated sequence; third set, number 42

Generated sequence; third set, number 43

Generated sequence; third set, number 44

Generated sequence; third set, number 52

Generated sequence; third set, number 56

Figure: Generated sequence; third set, number 117

Generated sequence; third set, number 128

Figure: Generated sequence; third set, number 188

Figure: Generated sequence; third set, number 3618

Generated sequence; third set, number 19590

Figure: Histogram of sizes of generated sequences for the third set

Figure: Histogram of sizes of generated sequences for the third set

Analysis of data Rebuilding sequences

Remarks on the algorithm

Was running 5634 minutes on 64 bit AMD 3400+ with 1GB of RAM
and one IDE HDD 7200RPM

Used 10.6 million points

Was stopped by FPU error in sigmoid function for large values of
counter

Over 1600 sequences made from more than 1000 points

Tomasz Rybak tomasz.rybak@post.pl () Analysis of 23C3 Sputnik data 127 / 138

Analysis of data Rebuilding sequences

Joining of sequences

Many (too many?) sequences that are too short

Need to start joining

Or extend sequences by trying to use left points

But how to join?

For example which one of 3, 38, 117, 128, 188 should be joined to the
3618?

Should I use manual joining?

Manual (semi-manual) choosing of alternative in sequences?

Tomasz Rybak tomasz.rybak@post.pl () Analysis of 23C3 Sputnik data 128 / 138

Analysis of data Rebuilding sequences

Line slope

I assumed that sequence has linear growth, with coefficient 1.5
Next I assumed range of coefficients, from 1.0 to 2.0, based on
presentation from 23C3, and by observing histograms
This did not give good results in local algorithms, and was extended
in global algorithms
In Sputnik source code version 0.29 (file main.c) there are two sleep
function calls
Units are ticks, 32768Hz
One is constant sleep jiffies(0xffff) in line 271, and one is random
sleep jiffies(rand() in line 276)
Difference between ticks should be between 2.0 and 4.0 seconds
So there should be no straight line in data!
But I can find lines
So either there is too much data, and one can find anything he/she
wants
Or rand() was not so great, and it gave not-so-random data
The latter is true — single tag generates straight lineTomasz Rybak tomasz.rybak@post.pl () Analysis of 23C3 Sputnik data 129 / 138

Fragment of firmware of tag

void main (void)

{// get random seed

((unsigned char *) &seq)[0] = EEPROM_READ (4);

((unsigned char *) &seq)[1] = EEPROM_READ (5);

((unsigned char *) &seq)[2] = EEPROM_READ (6);

((unsigned char *) &seq)[3] = EEPROM_READ (7);

// increment code block after power cycle

((unsigned char *) &crc)[0] = EEPROM_READ (8);

((unsigned char *) &crc)[1] = EEPROM_READ (9);

store_codeblock (++crc);

seq ^= crc;

srand (crc16 ((unsigned char *) &seq, sizeof (seq)));

// increment code blocks to make sure that seq is higher or equal after battery change

seq = ((u_int32_t) crc) << 16;

i = 0;

while (1) {

// update code_block so on next power up the seq will be higher or equal

crc = seq >> 16;

if (crc == 0xFFFF) break;

if (crc == code_block) store_codeblock (++crc);

// encrypt my data

shuffle_tx_byteorder ();

xxtea_encode ();

shuffle_tx_byteorder ();

// send it away

nRFCMD_Macro ((unsigned char *) &g_MacroBeacon);

CONFIG_PIN_LED = 1; nRFCMD_Execute (); CONFIG_PIN_LED = 0;

// reset touch sensor pin

TRISA = CONFIG_CPU_TRISA & ~0x02; CONFIG_PIN_SENSOR = 0;

sleep_jiffies (0xFFFF);

CONFIG_PIN_SENSOR = 1; TRISA = CONFIG_CPU_TRISA;

// sleep a random time to avoid on-air collosions

sleep_jiffies (rand ());

i++;

}

}

Analysis of data Rebuilding sequences

Possible improvements

No geometrical data was taken into consideration

So person wearing tag could run, walk, crawl, as no speed was
analysed

As no distance between stations was calculated

If data set with new firmware was used, its call for current mood
could help with finding sequences

Tomasz Rybak tomasz.rybak@post.pl () Analysis of 23C3 Sputnik data 131 / 138

Analysis of data Analysis

Disclaimer

Without having sequences sophisticated analysis is not possible

I was focusing on algorithms for recovering IDs

I have yet to come with analysing of behaviour of attendees

Following are the ideas, not something I have already done

Tomasz Rybak tomasz.rybak@post.pl () Analysis of 23C3 Sputnik data 132 / 138

Analysis of data Analysis

Position estimation

Simple way of telling difference in signal strength: tag sends different
power level pings. If reader receives weakest one, it is close. If it
receives only the strongest ones, it is far away.

Tag cycles though all power levels, but every other is the strongest
one.

Estimation of position by using negative knowledge

Take signal strength. It limits sphere where user can be.

You get two spheres, on with minimum radius, one with maximum

By using few of them, from different readers, you can take
intersection, and have estimated position. Should be enough to get
room from which users are. Then, take data from reader inside room
and accept only the weakest levels from this reader — they are the
ones inside room

Use logarithmic radius — stronger signal is twice radius

This requires knowing exact positions of readers

Tomasz Rybak tomasz.rybak@post.pl () Analysis of 23C3 Sputnik data 133 / 138

Analysis of data Analysis

Calculating direction of person

Is it possible to calculate direction basing on signal’s strength?

Let’s assume that one hemisphere (slightly less) is behind body, hence
signal loss

We could calculate few possibilities in direction, and choose the most
probable

But it would also move our persona. Maybe cooperate with previous
position? But it could fast become exponential algorithm.

It can be based on time sequences; if one goes in one directions, we
can assume that he/she is pointed in this direction

Also we could check all possibilities; there will not be many
permutations to check

Tomasz Rybak tomasz.rybak@post.pl () Analysis of 23C3 Sputnik data 134 / 138

Analysis of data Analysis

Possible ideas

For each day and for each ID, calculate when person comes to the
BCC and when leaves

Probably there will be two groups of people — those who leave BCC
and those who don’t

When there is disappearing sequence and the new one appears in the
same place, probably one reset tracker (by removing battery)

Tomasz Rybak tomasz.rybak@post.pl () Analysis of 23C3 Sputnik data 135 / 138

Analysis of data Analysis

Connections between people

Analysis of data to see who attended which talks

Groups of people that attended similar talks

Groups of friends — people who are close together not only during
talks, but also during breaks

To find friends and colleagues, find tags that are close in space and
time for more than defined period of time (so they talk or at least are
close in space) more than once (so they are not just standing in a
queue for tickets/papers/food)

Conditions: ∆t < 10s, distance < 1m, ∆y < 0, 5, id0 != id1, maybe
group by id0

By assuming that people are on the one surface we can ignore third
dimension, and just use planar functions offered by PostgreSQL

Of course, change of position is less important than distance between
tags, because fiends can talk and walk together

Tomasz Rybak tomasz.rybak@post.pl () Analysis of 23C3 Sputnik data 136 / 138

Visualisation of XML data

Analysis of data Analysis

The end

Questions?

Thank you for your attention

Tomasz Rybak tomasz.rybak@post.pl () Analysis of 23C3 Sputnik data 138 / 138

	Sputnik idea
	Hardware
	Data format
	Database
	Analysis of data
	Basic graphs
	Rebuilding sequences
	Analysis

