
AES: side-channel attacks for the masses.
(rev 0.2)

Victor Muñoz
vmunoz@ingenieria-inversa.cl

October 2007

Abstract.

AES (Rijndael) has been proven

very secure and resistant to
cryptanalysis, there are not

known weakness on Rijndael
algorithm up to day. But there

are some practical ways to

break weak security systems
that rely on AES.

Introduction.

AES has been subject to
exhaustive cryptanalysis

efforts, but none of them could

break the cipher.

The newest attacks can break

only short-cut versions of AES,
with a reduced number of

rounds (up to 9 rounds on AES-
192), the most fruitfully

techniques used were Collision

Attack, Square Attack,
Impossible Differential,

Truncated Differential and
Related Key, you could see a

summary of the cipher breaking

level of such techniques in [1],
and see a briefly description of

some of them in [2].

The most practical attacks on

AES are side-channel attacks,
that don't intend to attack the

algorithm itself, but look to

reconstruct the key from secret
leakage through the physical

implementation of the
algorithm; such leak of

information could be –among

others- Power Consumption,
Time, Electromagnetic

Radiation, and etcetera.

In AES breaking quest Simple

Power Analysis and Differential
Power Analysis were used

roughly on attacks to smart-

cards as stated in [x]. Also
Cache Timing Attacks are well

known, but seem a little hard to
use it in real world situations,

also they may need clock cycle

level accuracy in the timing

measurements, and big

amounts of sampling, those

Cache Timing Attacks do not
seems feasible for other

scenarios than process-to-
process attacks (ie: remote key

retrieval).

Suppose you are in a dealing

with a process-to-process
situation, that means that your

offensive process has some

access to the overall system,
then why to bother to use a

complex attack when you could

use some other meaning to
spot AES keys in no time?.

In this document we will see 2

methods for attack AES that

should work with no problem in
real world situations and are

not exclusively for neither

laboratory experiments nor
concept proofs.

Those attacks are intended to
retrieve an AES key when you

have physical access to the

machine you want to attack,
one method require you have

full access to the system
meaning you could install a

debugger or exception handler,

and full access to the process
you want to attack.

The second method is simpler

to implement and you only

need to have reading access to
memory of the victim process,

extending this method you

could gain access to AES key
directly from the RAM IC

modules assuming the RAM is
not encrypted, the AES

implementation is software

based, and of course all the key

processing is not fit just in the

internal CPU data cache.

Why could you be interested to

attack machines that you own
and not a third party victim?

Simple, there exists lot of

boxes that come locked (and
limited) only to run the

software singed for the box
vendor, machines like

videogame consoles, set-top

boxes, cell phones, routers, etc.

Such key retrieving activity has

been very useful –for example-
in the efforts to circumvent

DRM schemes like AACS, that
rely strongly on AES, your

AACS licensed player software

hides you the keys needed for
decode a movie, and that

simply prevent you to make

your own media player or see
your movies in any free

operating system, moreover

you could not see a HD movie
at full resolution in a non HDCP

licensed (and yet expensive)

monitor.

Easy AES key retrieval
History.

Let's begin with a little of
history, muslix (the former

hacker of AACS system) [4],
has got the keys needed to

consider AACS cracked back in

December 2006 without the
need for tracing or debugging

any bit of code, the method he

used was simply guess the
decrypted header of a video

stream block and run a key
finder in a memory dump of the

process of the AACS enabled

player software trying every 16

continuous bit as keys, and that

lead him –just in seconds- to a

VUK (Volume Unique Key)
needed to decrypt the whole

movie, and see it in any player,
setup or OS that you want.

We are going to refer here to
the above attack as known-

plaintext/key within process
memory (in rigor was guessed-

plaintext and not known-

plaintext).

This attack was recognized by

the same AACS LA on January
24, 2007 [5], and from that

moment AACS scheme was in
fact full compromised.

Some months after the original
attack, more attacks come to

the AACS scheme, all those

attacks have something in
common: AES key spotting with

a little of effort in comparison

with the state of art side-

channel attacks on AES.

Reference

[1] http://www.iaik.tu-graz.ac.at/research/krypto/AES/ - IAIK Krypto

Group - AES Lounge

[2]

http://www.iaik.tugraz.at/aboutus/people/oswald/papers/aes_report.
pdf - AES - The State of the Art of Rijndael’s Security

[x]

[4] http://forum.doom9.org/showthread.php?t=119871

[5] http://www.aacsla.com/press/ January 24, 2007

