
http://www.recurity-labs.com

Port Scanning improved
New ideas for old practices

Copyright © 2007 Recurity Labs GmbH

Why reinventing wheels?

� The world changes constantly
� The world is full of crappy software
� The requirements of software change
� When the requirements changed sufficiently, the

software no longer fits the purpose
� Some software didn’t fit the purpose to begin with

� Reality is your measure

Redo-Software:
When to start?

� Only for people who have a realistic chance
to actually finish the project
� The crappy original is still better than the

unfinished sequel
� Extrapolate if the problem you are planning to

solve is going to get better or worse in the
future without your solution.
� Don’t make a schedule!
� Make it as good as you possibly can!

Redo-Software:
How do you start?

� Set your requirements
� Remember, they are your requirements
� Don’t try to please everyone you talk to, tell them to fsck off

� Don’t import requirements from the existing software
� Do you really need to be portable?
� Do you really have to have this feature?

� Don’t read too much of the “other” code
� Think for yourself first
� Compare your solution with the “other” code later

Warning: Redo-Software is
uncool!

“But I want to research
quantumcybercryptofeminism
and its impact on onion-routed

RFID Sex 2.0 !”

Go ahead !

A Port Scanner? *Yawn*

� Port scanning is fun for most people
� Needs random scanning
� Needs 1337 output
� Needs 23 different scanning types

� Port scanning is work for some people
� Needs Accuracy
� Needs Speed
� Speed Î Time Î Money

� Will use dedicated machines

My hat is off to Fyodor !
� nmap was the first general purpose port scanning

tool available
� Some of you might remember the times when you had to

use synscan or similar
� Nobody really misses them

� nmap introduced many important inventions
� Granted, most do not belong into a port scanner
� They are nice and useful anyway

� Redo-Software just doesn’t mean the original is bad,
worthless or outdated
� It just means you need something else

Why not nmap?
� 3 * 255 Hosts in 30 days with nmap

� I’m actually coming of age
� Your scanner is not 1337 if it takes 13:37 per host!
� No, --disable-waiting-for-things-that-dont-happen doesn’t cut it

� Professionals don’t scan hosts that are …
… powered off
… disassembled
… currently being carried around in the office

� Large scale network scanning is application stocktaking, not
vulnerability identification
� Little interest in the one fully filtered host with only port 23420 open
� Much interest in how many systems in five Class B networks have port

12345 open

And on a more abstract
level…

� All discovery methods depend on a single set
of information: the list of open, closed and
filtered TCP ports
� OS Fingerprinting
� Service probing
� Banner grabbing

� Accordingly, we need this list first, and quickly
at that

Our Requirements
� TCP SYN Scanning only, no XMAS trees
� No UDP Scanning
� UDP scanning is a negative scan method
� Information value of a UDP scan of a properly firewalled

host with UDP services is exactly zero
� Constant access to result data
� Offloading fingerprinting tasks right when results become

available
� Design for embedded use
� Engine design with variable front ends
� Bottom line: Do just one thing, but do it right.

PortBunny
A kernel-based port-scanner

Copyright © 2007 Recurity Labs GmbH

PortBunny

� Portbunny scans faster by sending more
� Portbunny builds a bridge between TCP

congestion control and port-scanning.
� Portbunny shows that vanilla TCP-SYN port-

scans already leave you with lots of room for
research.

1. Port-Scanning - Basics

21
CLOSED

22
OPEN

23
FILTERED

R
ST

-A
C

K

SY
N

SY
N

SY
N

-A
C

K

SY
N

Identify open, closed
and filtered ports by
sending connection
requests and observing
responses.

(TCP-SYN or “half-
open”-scanning)

Naive port-scanner

� Won’t quite do it.
� Sending as fast as possible may result in

dropped packets or even congestion collapse.
� Open/Closed ports will be falsely reported as

being filtered.
� Optimal speed may change over time!

foreach p in ports_to_scan:
send_request_to(p)
get_response()

Tell us to
slow down, please.

� Q: Will the network explicitly tell us that we
should slow down?
A: In general, no.
� Exception: ICMP source-quenches,
� Exception: ECN for IPv6

What info do we have?

� If a response is received, we have a round-
trip-time.

� Packet-drops can be detected given that we
know a certain packet should have provoked
an answer.

� That’s all.

2. A network model

� Edges: Throughput (Delay), Reliability
� Nodes: Queuing-capacity

In

54Mbps
1Gbps

100MBps
Out

Scanner

Target

Simplification

Bottleneck

� Model implicitly suggested by the term “bottleneck”
and by experience from socket-programming.

$MinimumThroughputOfNodesInvolved bps

Optimal speed

� Speed is the number of packets sent per time-
frame.
Find the optimal delay.

Optimal speed

faster

slow

So much for theory…

� … but finding the optimal delay will fail in
practice!

The round-trip-time problem

� Dropped packets can’t be detected before a
complete round-trip-time has passed.

� At that time about rtt/delay other packets have
already been sent to maintain the “optimal delay”.

X X X
X

Drop detected!

Drop detected, but way too late :/

Queuing capacity

� “You can fire 10 packets at a delay of 0 but
that doesn’t mean you can do the same with
100 packets.” Why?

� The network has limited ability to queue data.
� This very Important property of the network

suggests a new model.

The “bucket-model”
Think of each host as a bucket
with a hole at the bottom. The
optimal speed has been reached
when buckets are at all times
filled completely.

New model, new question

� Old question:
“How long should I wait before sending the
next packet”

� New question:
“How much data can be out in the network
at once?”

TCP Congestion Control

� TCP congestion control schemes ask that
exact same question!

� Note: NMAP’s timing-code is based on the
classic TCP-congestion-control algorithm
“TCP-Reno”.

Doesn’t that work
automatically?

Network-Layer
(IPv4/IPv6/ARP...)

Transport-Layer
(TCP/UDP/ICMP/IGMP)

Application-Layer
(HTTP/FTP/SSH)

Data-Link-Layer
(Ethernet/PPP/Token-ring)

Physical Layer

� Why do we have to implement
congestion control at all?
� Doesn’t TCP provide congestion

control to upper layers?
� No established TCP-

connection
� Control the emission of IP-

packets which happen to be
TCP-SYNs.

TCP vs. Port-Scanning
Port-Scanning
Packets my not
produce answers.

Timeouts are not
error-conditions

No sequence
numbers

TCP
Receiver acks
packets.

Timeouts are error-
conditions

Sequence-numbers
are used

… in other words:

� The TCP-receiver is cooperative
� A port-scanned host is not cooperative.

� Of course, that doesn’t mean we can’t force it
to be.

Triggers -
forcing cooperation

� Before starting the scan, find one or more
packets which trigger a response.
� PortBunny tries the following:
� ICMP-Echo Requests
� ICMP Timestamp Requests
� ICMP Address-Mask Requests
� TCP-SYN Port 22/80/139/135 …
� UDP Port …

Inserting triggers
into the probe-stream

� Insert these packets into the packet-stream
and base your timing-code on the triggers

SYN 10 SYN 140 TRIGGER SYN 164 SYN 24 TRIGGER

What’s that good for?

� Trigger-responses now play the same role
Acknowledgments play in TCP’s congestion
control!
� We receive constant information about the

network’s performance no matter if it is largely
filtered or not!
� A timeout is actually a signal of error!

What NMAP Had in Mind

0

5

10

15

20

25

30

35

40

45

50

55

NMAP on a responsive host

time

C
W

N
D

Drop detected

Going into cong. avoidance

ssthresh has been divided by 2

What nmap forgot.

0

5

10

15

20

25

30

35

40

45

50

55

NMAP scanning a mostly filtered host

time

cw
nd

An open port has been identified!

But let’s be fair:

� If a host has not responded in 5 seconds, a
ping is sent.
� A response is then counted as 3 regular

responses.
� *g*

/* When a successful ping response comes back, it
counts as this many "normal" responses, because the
fact that pings are neccessary means we aren't
getting much input. */

… and then there are
filtered hosts ☺

� 66535 ports, mostly filtered, Internet.

0:15.00 m

12:18.00 m

Why mention
Sequence-Numbers?

Out-of-oder-queue

2Next seq-num
expected:

2356

3444

� An Ack is sent by
the receiver for
each packet

� Duplicate Acks
indicate packet-
loss!

� Fast-retransmit

Trigger Sequence-Numbers

� When integrating sequence-numbers into
triggers, an algorithm similar to fast-
retransmit can be implemented:

Trigger-Response 6
MISSING

Trigger-Response 7

Trigger-Response 8

Trigger-Response 9

Trigger-Response 5 Example:

• Responses for 7, 8 and 9 have
been received but there’s no
response for 6.

• One can assume that 6 has been
dropped even if its timeout-value
has not been reached!

NMAP – Timeout-detection

� NMAP can only detect drops after resending
� If a resent probe produces an answer,

obviously, the initial probe was dropped.
� Each probe has its own timeout-clock. That

doesn’t scale well, so there are interesting
hacks to solve this.

/*/* A A previousprevious probe must have been lost ... */.probe must have been lost ... */.

Consequence

� To stay responsive to drops, NMAP must
resend the probe that may have just dropped
straight away!

� This makes NMAP extremely vulnerable to the
“late-responses”-problem

“Late-responses” Problem

Slot for
response from

Port 88

Slot for
response from

Port 10

Se
nd

 p
ro

be
 8

8

Slot for
response from

Port 3333

Slot for
response from

Port 88

Slot for
response from

Port 10

Slot for
response from

Port 3333

R
es

en
d

pr
ob

e
88

R
es

po
ns

e
fo

r
pr

ob
e

88

If the approximation of the timeout is too
optimistic, responses arrive shortly after the
resend has occurred.

Î Lots of unnecessary traffic which
reduces the scanning-speed.

(1) (2)

Defeating late-
responses (with triggers)

L

F

Port-Ring-List

Timed-out
batchReinsert

unknown ports
Batch-creator

create New batch

PortBunny does not rely on immediate resends
to detect packet-loss!
Î The probe can be resent after ALL other
unknown ports have been probed!

Triggers vs.
TCP

Trigger-based scanning
Triggers are
acknowledged.

Trigger-Timeouts are
error-conditions.

Sequence-numbers are
used for all triggers.

TCP
Receiver acks
packets.

Timeouts are error-
conditions

Sequence-
numbers are used

Benefits of trigger-use

� Filtered hosts can be scanned properly
� Packet-drops can be detected much earlier

leading to better responsiveness to drops.
� Immediate probe resends are not necessary

anymore which helps reduce useless extra
traffic.
� Port-Scanning has been ported to the tcp-

congestion control domain! We can implement
any TCP-congestion-control scheme!

Problems with triggers

� Not all triggers have the same quality:

� ICMP-triggers and UDP-triggers could be rate-
limited while probes aren’t.
� TCP-triggers are the best available triggers.
� QoS might be a problem, some times

� A host may not respond to any supported
trigger.

Fixes

� Try to find TCP-SYN-triggers first and use
ICMP and UDP-triggers as a fallback-solution.

� If a TCP-SYN-trigger can be found at scan-
time, add it to the list of triggers in use and
discard fallback-triggers.

Racing on responsive hosts

� PortBunny sends 10% more data because of
the triggers? Can it still compete with NMAP
on responsive hosts?

VSVS

Nothing’s for free

� 65535 ports, mostly closed, WRT.

0:30.17 m
00:32.05 m

… but that doesn’t count
much.

� (spiegel.de)

0:28.04 m

00:41.14 m

… still PortBunny often wins
this race

0:25.23 m
0:30.20 m

And then there
are serious bugs

Translates to: If packet-drops are particularly bad,
break the entire timing-concept.

⇒ The CWND will not reflect the number of probes out
at once anymore!

⇒ The self-clocking-property is being ignored!

/* If packet drops are particularly bad, enforce a
delay between packet sends (useful for cases such
as UDP scan where responses are frequently rate
limited by dest machines or firewalls) */

Scanning the IPHONE

7:58.03 m
24:41.51 m

Scanning in parallel

� PortBunny can scan a large number of hosts
in parallel but by default, it will scan one host
at a time. Why?

� Is a parallel scan always faster than a
sequential scan?

Bottlenecks
Will parallel scans win?

Port-Scanner

Target-bottleneck

Partly shared bottleneck
Shared bottleneck

Shared bottleneck

� If there’s a bottleneck shared among all scan-
jobs (common case), then there is no gain in
scanning in parallel!

� … assuming that the congestion-control-
scheme actually works correctly (even for
filtered hosts!)

� In fact, more unpredicted drops will occur and
they will slow us down!

Target-bottlenecks

� If the target is the bottleneck, there is a gain in
parallel scanning.

� It’s possible to do timing on a per-host basis
entirely: TCP-congestion-control-schemes
were created with this scenario in mind!

� “Fairness” has been considered.

What does NMAP do?

� Implement the same timing-algorithm for a
global system which is informed of all answers
and packet-drops to address shared
bottlenecks.

� A scan-job may only send a new packet if the
per-host-timing AND the global timing allows
that.

Problem with this solution

� A badly performing host (target-bottleneck) will
keep good performing host from firing.
� This timing is biased towards the performance

of the worst scan-job.
� CWND is not “the number of packets out”

anymore => again, the concept was broken.

Portbunny’s solution

� Each scan-job performs its own timing based
on a tcp-cc-scheme.
� This is similar to starting several independent

http-downloads.
� You can only do that if the congestion-control-

scheme actually works!
� By default: scan sequentially because single

shared bottlenecks are the most common
scenario.

Research in
parallel scanning

� Old congestion control schemes must
generate losses to find boundaries. Think
wireless ;)
� Modern congestion control techniques are

based on detecting changes in round-trip-time.
� Correlations between changes in round-trip-

time can be used to detect shared bottlenecks!

… which is why Bunny
is in the kernel.

� Timing is as precise as it can get.

� The “scanner-bottleneck”-issue for a large
number of hosts is addressed not just
algorithmically.

� We get a reliable sniffer for free.

Kernel-based sniffer

A R P _ R C V

IP _ R C V

P P P O E _ R C V

P O R T _ B U N N Y _ R C V

Et
he

rn
et

-
Fr

am
es

Port-bunny adds packet-
handler by calling

dev_add_pack(struct
packet_type *pt)

from net/core/dev.c

Sniffer
(Software Interrupt Handler)

The user’s perspective

� Chat with /dev/portbunny ☺
� The protocol is text-based and very simple.
� You can use portbunny with cat, echo and

friends… but don’t worry, we have a UI.

Example input

� # echo $command > /dev/portbunny

� $command:
� create_scanjob 192.168.1.1 FLOOD
� set_ports_to_scan 192.168.1.1 FLOOD 1-500
� execute_scanjob 192.168.1.1 FLOOD

Example output
� # cat /dev/portbunny
� SCAN_JOB_CREATED 192.168.1.1 FLOOD
� SCAN_JOB_EXECUTED 192.168.1.1 FLOOD
� …
� RESULT 192.168.1.1 FLOOD PORT_STATE 79

CLOSED
� RESULT 192.168.1.1 FLOOD PORT_STATE 80

OPEN
� ….
� SCAN_JOB_REMOVED 192.168.1.1 FLOOD

The PortBunny UI

� $ portbunny host
� -p <port|port-range> … ports to scan
� -d discover-mode
� -t <trigger> … triggers to try
� -g generate data for gnuplot

� And that’s all.

Thank you!

Fabian ´fabs´ Yamaguchi
fabs@recurity-labs.com

Felix ´FX´ Lindner
fx@recurity-labs.com

Recurity Labs GmbH, Berlin, Germany
http://www.recurity-labs.com

