I know who you clicked last summer

Svenja Schröder

December 30, 2007

イロン イヨン イヨン イヨン

Table of contents

Introduction

Basics

Measures

Network measures Actor measures

Algorithms

Enhancing everything with an ontology

Example

イロン イヨン イヨン イヨン

Introduction

Basics Measures Algorithms Enhancing everything with an ontology Example

Introduction

Introduction

Svenja Schröder I know who you clicked last summer

Introduction

Basics Measures Algorithms Enhancing everything with an ontology Example

What is social network analysis?

- interdisciplinary approach: sociology, formal mathematics, statistics
- models actors and their relations (e. g. interactions) into an interpretable model
- precise methods for defining social concepts

イロト イポト イヨト イヨト

Introduction

Basics Measures Algorithms Enhancing everything with an ontology Example

Application fields

イロン イヨン イヨン イヨン

Application fields

- used in sociology, geography, social psychology, communication studies, information science, economics, biology, game theory . . .
- analysis of all kinds of social structures
 - communities of actors
 - groups and subgroups
 - associations, societies, states
- popular example: social software
 - web2.0-communites

- 4 回 2 - 4 □ 2 - 4 □

Small world experiment

- several experiments in the 70s by Stanley Milgram
- he examined the average path length for social networks of people in the US
 - packets were randomly sent to US citizens
 - they should forward it to another randomly chosen US citizen
 - if they didn't know each other personally, the sender should send the packet to a person of whom he/she thought he/she could know the receiver
- 'Six degrees of separation' myth

イロト イポト イヨト イヨト

Basics

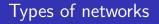
Svenja Schröder I know who you clicked last summer

・ロン ・回と ・目と ・目と

æ

What does a social network look like?

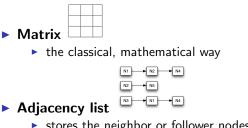
- Social network = network = graph
 - many concepts of SNA are based on network or graph theory
- models social structures as a graph
 - consists of a set of nodes (vertices) and edges (ties)
 - edges are the most important part


イロト イヨト イヨト イヨト

Nodes and edges

nodes represent the actors or elements which are examined

- sometimes with node weights (uncommon)
- edges are the relationships between the actors
 - differ in content, weighting and form
 - content: represent relationships, transactions or communication forms (e. g.)
 - weighting: can be weighted to express different intensity levels
 - form: directed or undirected


イロト イヨト イヨト イヨト

- directed or undirected: have directed or undirected edges (important for network flow)
- one-mode: one type of nodes (typical)
- two-mode: two types of nodes
 - edges only from one type of node to another type (directed)
- bipartite / affiliation networks: two-mode network with a set of actors and a set of affiliations
- ego-centered: from the view of one actor

イロン イヨン イヨン イヨン

Common network representations

- stores the neighbor or follower nodes for every node in a linked list
- better to compute, less memory intense

Graphical visualisation

easy to grasp, intuitionally comprehensible

Paths in a network

- not only direct, but also indirect connections (path length > 1)
- > path: 'walk' between two nodes without visiting a node twice
 - edge direction important in directed networks!
- **geodesic** / distance: shortest path between two nodes
- paths describe the flow of information and resources
- long path length can lead to distortion of information

・ロン ・回と ・ヨン・

Network measures Actor measures

Measures

- Network measures
- Actor measures

・ロ・ ・ 日・ ・ 日・ ・ 日・

Network measures Actor measures

- measure for connectivity in the network
- number of edges divided by the number of possible edges:
- $\blacktriangleright \Delta = \frac{E}{E_{max}}$
- subject of the network has influence on density (friendship networks vs. co-worker networks)

・ロン ・回と ・ヨン・

Network measures Actor measures

- very basic measure for influence of an actor
- undirected network:
 - degree: number of edges
- directed network:
 - indegree: number of incoming edges
 - outdegree: number of outgoing edges

イロン イヨン イヨン イヨン

Network measures Actor measures

Centrality and prestige

- describe importance, visibility and prominence of actors in the network
- prominent actors have big influence

・ロン ・回 と ・ ヨ と ・ ヨ と

Network measures Actor measures

Centrality

measures involvement of actor in connections of other actors

- works on undirected networks
- 3 types of centrality:
 - degree centrality
 - closeness centrality
 - betweenness centrality
- centrality measures are normed to network size [0, 1]

イロト イヨト イヨト イヨト

Network measures Actor measures

Betweenness centrality

- used most frequently
- measures for the number of shortest paths going through the actor

$$\blacktriangleright C_B(n_i) = \sum_{j < k, i \neq j, i \neq k} \frac{g_{jk}(n_i)}{g_{jk}}$$

・ロン ・回 と ・ ヨ と ・ ヨ と

Network measures Actor measures

indicates how many direct or indirect votes an actor receives

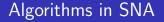
- = number of incoming relations (path ≥ 1)
- needs a directed network
- Different types of prestige:
 - indegree prestige
 - proximity prestige
 - ▶ ...

・ロン ・回と ・ヨン・

Network measures Actor measures

What else is there?

- Clustering
- Clique analysis
- ▶ ...


・ロト ・回ト ・ヨト ・ヨト

Algorithms

Svenja Schröder I know who you clicked last summer

ヘロン ヘヨン ヘヨン ヘヨン

- mostly borrowed from graph theory and interpreted accordingly
 - time complexity must be considered!
- this section: some example algorithms

イロン 不同と 不同と 不同と

Shortest paths: dijkstra algorithm

- classical algorithm in graph theory (Dijkstra, 1959)
- calculates shortest path between two nodes for positive edge weights
- used for calculation of centrality and prestige

イロト イヨト イヨト イヨト

Importance: HITS algorithm

- 'hypertext induced topic selection', hubs and authorities concept (Kleinberg, 1999)
- calculates importance based on links in graph structure
- every node gets a hub and an authority value
 - hub: node is linked often by nodes with high authority values

$$h(p) = \sum_{(q,p)\in E} a(q)$$

authority: node links many nodes with high hub values

$$a(p) = \sum_{(q,p)\in E} h(q)$$

- mutually reinforcing relationship
- not classical, but yet interesting

イロト イポト イヨト イヨト

Enhancing everything with an ontology

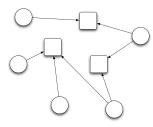
Enhancing everything with an ontology

・ロト ・回ト ・ヨト ・ヨト

Gruber, 1993

'An ontology is an explicit specification of a conceptualization.'

Gruber, 2000

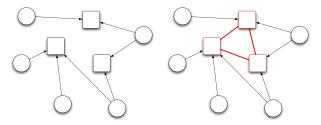

'An ontology defines (specifies) the concepts, relationships, and other distinctions that are relevant for modeling a domain.'

- philosophical term, later used in KI and knowledge modeling
- today: one of the basic ideas of semantic web proposed by Tim Berners-Lee
- can be expressed as a graph

イロト イポト イヨト イヨト

Why an ontology?

- e. g. widely used in recommender systems
- new 'dimension' in bipartite networks



→ 同 → → 三 →

< ≣ >

Why an ontology?

- e. g. widely used in recommender systems
- new 'dimension' in bipartite networks

イロン イヨン イヨン イヨン

Ontology based recommendations

- categorization of data items
- structuring of meta data
- overcomes the cold start problem of a recommender system

イロン イヨン イヨン イヨン

Example

Svenja Schröder I know who you clicked last summer

ヘロン ヘヨン ヘヨン ヘヨン

Sputnik data (www.openbeacon.org)

Svenja Schröder I know who you clicked last summer

ヘロン ヘヨン ヘヨン ヘヨン

Generating social events

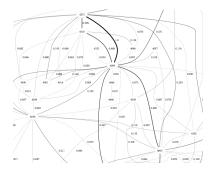
3 types of 'social events':

- followed
- stayed
- talk attendance

additionally generated to the other Sputnik data this year

イロト イヨト イヨト イヨト

Calculated measures


nodes:

- degree
- betweenness centrality
- edges:
 - normalized followed value
 - normalized stayed value
 - simultaneously attended talks
 - 'friendship factor'

| 4 回 2 4 U = 2 4 U =

- ▶ ... not yet finished
- still needs some tuning

→ 御 → → 注 → → 注 →

- Wasserman and Faust: 'Social Network Analysis'
- Jansen: 'Einführung in die Netzwerkanalyse. Grundlagen, Methoden, Forschungsbeispiele'
- Wikipedia

・ロン ・回と ・ヨン・

.....

KTHXBYE!

For further questions: svenja@23bit.net or http://sv.23bit.net

・ロン ・回 と ・ ヨ と ・ モ と