
Ruby on Rails Security

Jonathan Weiss, 30.12.2007
Peritor Wissensmanagement GmbH

2

Who am I ?

Jonathan Weiss

• Consultant for Peritor Wissensmanagement GmbH

• Specialized in Rails, Scaling, and Code Review

• Active member of the Rails community

• MeinProf.de - one of the first big German Rails sites

• Webistrano - Rails deployment tool

• FreeBSD Rubygems and Ruby on Rails maintainer

3

3

Agenda

Application code

Setup and deployment

Framework code

Rails Application Stack

 Follow the application stack
and look for

• Information leaks

• Possible vulnerabilities

• Best practices

4

Rails Application Setup

5

Rails Setup

6

Rails Setup - FastCGI

7

Rails Setup - Mongrel

8

Information leaks
and

possible vulnerabilities

9

Information leaks

Is the target application a Rails application?

• Default setup for static files:

/javascripts/application.js

/stylesheets/application.css

/images/foo.png

• Pretty URLs

/project/show/12

/message/create

/folder/delete/43

/users/83

10

Information leaks

Is the target application a Rails application?

• Rails provides default templates for 404 and 500 status pages

• Different Rails versions use different default pages

• 422.html only present in applications generated with Rails 2.0

11

Sample Status Pages

http://www.twitter.com/500.html http://www.43people.com/500.html

http://www.strongspace.com/500.html Rails >= 1.2 status 500 page

12

Server Header

GET http://www.43people.com

Date: Tue, 25 Dec 2007 21:23:24 GMT
Server: Apache/1.3.34 (Unix) mod_deflate/1.0.21 mod_fastcgi/2.4.2 mod_ssl/2.8.25 OpenSSL/0.9.7e-p1
Cache-Control: no-cache
…

GET https://signup.37signals.com/highrise/solo/signup/new

Date: Tue, 25 Dec 2007 21:23:24 GMT
Server: Mongrel 1.1.1Status: 200 OK
…

httpd.conf
Header unset Server

Disable Server header

13

Information leaks

Subversion metadata

• Typically Rails applications are deployed with Capistrano / Webistrano

• This will push .svn directories to the servers

GET http://www.strongspace.com/.svn/entries

…
dir
25376
http://svn.joyent.com/joyent/deprecated_repositories/www.strongspace/trunk/public
http://svn.joyent.com/joyent

2006-04-14T03:06:39.902218Z
34
justin@joyent.com
…

<DirectoryMatch "^/.*/\.svn/">
 ErrorDocument 403 /404.html
 Order allow,deny
 Deny from all
 Satisfy All
</DirectoryMatch>

Prevent .svn download

14

Cookie Session Storage

Since Rails 2.0 by default the session data is stored in the cookie

Base64(CGI::escape(SESSION-DATA))--HMAC(secret_key, SESSION-DATA)

15

Cookie Session Storage

Security implications

• The user can view the session data in plain text

• The HMAC can be brute-forced and arbitrary session data could be created

• Replay attacks are easier as you cannot flush the client-side session

Countermeasures

• Don’t store important data in the session!

• Use a strong password,
Rails already forces at least 30 characters

• Invalidate sessions after certain time on the server side

… or just switch to another session storage

16

Cookie Session Storage

Rails default session secret

Set HTTPS only cookies

17

Cross-Site Scripting - XSS

“The injection of HTML or client-side Scripts (e.g. JavaScript) by malicious users into
web pages viewed by other users.”

18

Cross-Site Scripting - XSS

Cases of accepted user input

• No formatting allowed

search query, user name, post title, …

• Formatting allowed

post body, wiki page, …

19

XSS - No Formatting Allowed

Use the Rails `h()` helper to HTML escape user input

But using `h()` everywhere is easy to forget

• Use safeERB plugin

• safeERB will raise an exception whenever a tainted string is not escaped

• Explicitly untaint string in order to not escape it

http://agilewebdevelopment.com/plugins/safe_erb

20

XSS - Formatting Allowed

Two approaches

Use custom tags that will translate to HTML (vBulletin tags, RedCloth, Textile, …)

Use HTML and remove unwanted tags and attributes

• Blacklist - Rails 1.2

• Whitelist - Rails 2.0

21

XSS - Custom Tags

Relying on the external syntax is not really secure

Filter HTML anyhow

22

XSS - HTML Filtering

Use the Rails `sanitize()` helper

Only effective with Rails 2.0:

• Filters HTML nodes and attributes

• Removes protocols like “javascript:”

• Handles unicode/ascii/hex hacks

23

XSS - HTML Filtering

sanitize(html, options = {})

http://api.rubyonrails.com/classes/ActionView/Helpers/SanitizeHelper.html

24

XSS - HTML Filtering

Utilize Tidy if you want to be more cautious

25

Session Fixation

Provide the user with a session that he shares with the attacker:

26

Session Fixation

Rails uses only cookie-based sessions

Still, you should reset the session after a login

The popular authentication plugins like restful_authentication are not doing this!

27

Cross-Site Request Forgery - CSRF

You visit a malicious site which has an image like this

Only accepting POST does not really help

28

CSRF Protection in Rails

By default Rails 2.0 will check all POST requests for a session token

All forms generated by Rails will supply this token

29

CSRF Protection in Rails

Very useful and on-by-default, but make sure that

• GET requests are safe and idempotent

• Session cookies are not persistent (expires-at)

30

SQL Injection

The users input is not correctly escaped before using it in SQL statements

31

SQL Injection Protection in Rails

Always use the escaped form

If you have to manually use a user-submitted value, use `quote()`

32

JavaScript Hijacking

http://my.evil.site/

JSON response

The JSON response will be evaled by the Browser’s JavaScript engine.

With a redefined `Array()` function this data can be sent back to http://my.evil.site

33

JavaScript Hijacking Prevention

• Don’t put important data in JSON responses

• Use unguessable URLs

• Use a Browser that does not support the redefinition of Array & co,
currently only FireFox 3.0

• Don’t return a straight JSON response, prefix it with garbage:

The Rails JavaScript helpers don’t support prefixed JSON responses

34

Mass Assignment

User model

35

Mass Assignment

Handling in Controller

A malicious user could just submit any value he wants

36

Mass Assignment

Use `attr_protected` and `attr_accessible`

Start with `attr_protected` and migrate to `attr_accessible` because of the different
default policies for new attributes.

Vs.

37

Rails Plugins

Re-using code through plugins is very popular in Rails

Plugins can have their problems too

• Just because somebody wrote and published a plugin it doesn’t mean the plugin is
proven to be mature, stable or secure

• Popular plugins can also have security problems, e.g. restful_authentication

• Don’t use svn:externals to track external plugins,
if the plugin’s home page is unavailable you cannot deploy your site

38

Rails Plugins

How to handle plugins

• Always do a code review of new plugins and look for obvious problems

• Track plugin announcements

• Track external sources with Piston, a wrapper around svn:externals

http://piston.rubyforge.org/

39

Rails Denial of Service Attacks

Rails is single-threaded and a typical setup concludes:

• Limited number of Rails instances

• ~8 per CPU

• Even quite active sites (~500.000 PI/day) use 10-20 CPUs

• All traffic is handled by Rails

40

Rails Denial of Service Attacks

A denial of service attack is very easy if Rails is handling down/uploads.

Just start X (= Rails instances count) simultaneous down/uploads over a throttled line.

This is valid for all slow requests, e.g.

• Image processing

• Report generation

• Mass mailing

41

Rails Slow Request DoS Prevention

Serve static files directly through the web server

• Apache, Lighttpd, nginx (use x-sendfile for private files)

• Amazon S3

Contaminate slow requests

• Define several clusters for several tasks

• Redirect depending on URL

42

Conclusion

43

Conclusion

Rails has many security features enabled by default

• SQL quoting

• HTML sanitization

• CSRF protection

The setup can be tricky to get right

Rails is by no means a “web app security silver bullet” but adding security
is easy and not a pain like in many other frameworks

44

44

Peritor Wissensmanagement GmbH

Lenbachstraße 2
12157 Berlin

Telefon: +49 (0)30 69 40 11 94
Telefax: +49 (0)30 69 40 11 95

Internet: www.peritor.com
E-Mail: kontakt@peritor.com

©Peritor Wissensmanagement GmbH - Alle Rechte vorbehalten

