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Who am I ?

Jonathan Weiss

• Consultant for Peritor Wissensmanagement GmbH

• Specialized in Rails, Scaling, and Code Review

• Active member of the Rails community

• MeinProf.de - one of the first big German Rails sites

• Webistrano - Rails deployment tool

• FreeBSD Rubygems and Ruby on Rails maintainer
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Agenda

Application code

Setup and deployment

Framework code

Rails Application Stack

   Follow the application stack
and look for

• Information leaks

• Possible vulnerabilities

• Best practices
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Rails Application Setup
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Rails Setup
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Rails Setup - FastCGI
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Rails Setup - Mongrel
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Information leaks
and

possible vulnerabilities
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Information leaks

Is the target application a Rails application?

• Default setup for static files:

/javascripts/application.js

/stylesheets/application.css

/images/foo.png

• Pretty URLs

/project/show/12

/message/create

/folder/delete/43

/users/83
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Information leaks

Is the target application a Rails application?

• Rails provides default templates for 404 and 500 status pages

• Different Rails versions use different default pages

• 422.html only present in applications generated with Rails 2.0
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Sample Status Pages

http://www.twitter.com/500.html http://www.43people.com/500.html

http://www.strongspace.com/500.html Rails >= 1.2 status 500 page
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Server Header

GET http://www.43people.com

Date: Tue, 25 Dec 2007 21:23:24 GMT
Server: Apache/1.3.34 (Unix) mod_deflate/1.0.21 mod_fastcgi/2.4.2 mod_ssl/2.8.25 OpenSSL/0.9.7e-p1
Cache-Control: no-cache
…

GET https://signup.37signals.com/highrise/solo/signup/new

Date: Tue, 25 Dec 2007 21:23:24 GMT
Server: Mongrel 1.1.1Status: 200 OK
…

# httpd.conf
Header unset Server  

Disable Server header
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Information leaks

Subversion metadata

• Typically Rails applications are deployed with Capistrano / Webistrano

• This will push .svn directories to the servers

GET http://www.strongspace.com/.svn/entries

…
dir
25376
http://svn.joyent.com/joyent/deprecated_repositories/www.strongspace/trunk/public
http://svn.joyent.com/joyent

2006-04-14T03:06:39.902218Z
34
justin@joyent.com
…

<DirectoryMatch "^/.*/\.svn/">
  ErrorDocument 403 /404.html
  Order allow,deny
  Deny from all
  Satisfy All
</DirectoryMatch>

Prevent .svn download



14

Cookie Session Storage

Since Rails 2.0 by default the session data is stored in the cookie

Base64(CGI::escape(SESSION-DATA))--HMAC(secret_key, SESSION-DATA)
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Cookie Session Storage

Security implications

• The user can view the session data in plain text

• The HMAC can be brute-forced and arbitrary session data could be created

• Replay attacks are easier as you cannot flush the client-side session

Countermeasures

• Don’t store important data in the session!

• Use a strong password,
Rails already forces at least 30 characters

• Invalidate sessions after certain time on the server side

… or just switch to another session storage
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Cookie Session Storage

Rails default session secret

Set HTTPS only cookies
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Cross-Site Scripting - XSS

“The injection of HTML or client-side Scripts (e.g. JavaScript) by malicious users into
web pages viewed by other users.”
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Cross-Site Scripting - XSS

Cases of accepted user input

• No formatting allowed

search query, user name, post title, …

• Formatting allowed

post body, wiki page, …
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XSS - No Formatting Allowed

Use the Rails `h()` helper to HTML escape user input

But using `h()` everywhere is easy to forget

• Use safeERB plugin

• safeERB will raise an exception whenever a tainted string is not escaped

• Explicitly untaint string in order to not escape it

http://agilewebdevelopment.com/plugins/safe_erb
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XSS - Formatting Allowed

Two approaches

Use custom tags that will translate to HTML (vBulletin tags, RedCloth, Textile, …)

Use HTML and remove unwanted tags and attributes

• Blacklist - Rails 1.2

• Whitelist - Rails 2.0
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XSS - Custom Tags

Relying on the external syntax is not really secure

Filter HTML anyhow
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XSS - HTML Filtering

Use the Rails `sanitize()` helper

Only effective with Rails 2.0:

• Filters HTML nodes and attributes

• Removes protocols like “javascript:”

• Handles unicode/ascii/hex hacks
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XSS - HTML Filtering

sanitize(html, options = {})

http://api.rubyonrails.com/classes/ActionView/Helpers/SanitizeHelper.html
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XSS - HTML Filtering

Utilize Tidy if you want to be more cautious
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Session Fixation

Provide the user with a session that he shares with the attacker:
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Session Fixation

Rails uses only cookie-based sessions

Still, you should reset the session after a login

The popular authentication plugins like restful_authentication are not doing this!
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Cross-Site Request Forgery - CSRF

You visit a malicious site which has an image like this

Only accepting POST does not really help
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CSRF Protection in Rails

By default Rails 2.0 will check all POST requests for a session token

All forms generated by Rails will supply this token
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CSRF Protection in Rails

Very useful and on-by-default, but make sure that

• GET requests are safe and idempotent

• Session cookies are not persistent (expires-at)
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SQL Injection

The users input is not correctly escaped before using it in SQL statements
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SQL Injection Protection in Rails

Always use the escaped form

If you have to manually use a user-submitted value, use `quote()`
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JavaScript Hijacking

http://my.evil.site/

JSON response

The JSON response will be evaled by the Browser’s JavaScript engine.

With a redefined `Array()` function this data can be sent back to http://my.evil.site
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JavaScript Hijacking Prevention

• Don’t put important data in JSON responses

• Use unguessable URLs

• Use a Browser that does not support the redefinition of Array & co,
currently only FireFox 3.0

• Don’t return a straight JSON response, prefix it with garbage:

The Rails JavaScript helpers don’t support prefixed JSON responses
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Mass Assignment

User model
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Mass Assignment

Handling in Controller

A malicious user could just submit any value he wants
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Mass Assignment

Use `attr_protected` and `attr_accessible`

Start with `attr_protected` and migrate to `attr_accessible` because of the different
default policies for new attributes.

Vs.
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Rails Plugins

Re-using code through plugins is very popular in Rails

Plugins can have their problems too

• Just because somebody wrote and published a plugin it doesn’t mean the plugin is
proven to be mature, stable or secure

• Popular plugins can also have security problems, e.g. restful_authentication

• Don’t use svn:externals to track external plugins,
if the plugin’s home page is unavailable you cannot deploy your site
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Rails Plugins

How to handle plugins

• Always do a code review of new plugins and look for obvious problems

• Track plugin announcements

• Track external sources with Piston, a wrapper around svn:externals

http://piston.rubyforge.org/
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Rails Denial of Service Attacks

Rails is single-threaded and a typical setup concludes:

• Limited number of Rails instances

• ~8 per CPU

• Even quite active sites (~500.000 PI/day ) use 10-20 CPUs

• All traffic is handled by Rails
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Rails Denial of Service Attacks

A denial of service attack is very easy if Rails is handling down/uploads.

Just start X (= Rails instances count) simultaneous down/uploads over a throttled line.

This is valid for all slow requests, e.g.

• Image processing

• Report generation

• Mass mailing
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Rails Slow Request DoS Prevention

Serve static files directly through the web server

• Apache, Lighttpd, nginx (use x-sendfile for private files)

• Amazon S3

Contaminate slow requests

• Define several clusters for several tasks

• Redirect depending on URL
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Conclusion
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Conclusion

Rails has many security features enabled by default

• SQL quoting

• HTML sanitization

• CSRF protection

The setup can be tricky to get right

Rails is by no means a “web app security silver bullet” but adding security
is easy and not a pain like in many other frameworks
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