Modelling Infectious Diseases in Virtual Realities

The "Corrupted Blood" plague of World of Warcraft [™] from an epidemiological perspective

24C3

Florian Burckhardt

MSc Epidemiology florian@burckhardt.de

Me, myself and I

- 1982 Commodore 64
- 1996 MSc Biology
- 2000 MSc Epidemiology
- 2004 ♥ ♥ ♥ Irene ♥ ♥ ♥
- 2004+ State and Federal Public Health Institutes

World of Warcraft

- Massively multiplayer online role playing game (MMORPG) by Blizzard Entertainment
- Launched 11/2004, 7/2007: 9 Mio players

ckhardt

- Players create "Avatars" from a set of races and classes, can learn professions
- Interaction with other Avatars
- LOTS of out-of-game activity

ases in Virtual Realities by

World of Adventure

- Avatars adventure the virtual world "Azeroth" and progress from Level 1 to Level 60 (70, 80)
- Each new level makes Avatars more powerful: more life, talents, spells, better armoury etc.
- Powerful enemies ("Bosses") can only be defeated by several coordinated max. level Avatars ("raid")

09/13 2005, Azeroth: Zul'Gurub

- Release of new gaming content: Blood God "Hakkar the Soulflayer" for high level Avatars
- During battle, Hakkar cast the spell "corrupted blood" (CB) on random Avatars
- CB hit with severe damage once plus additional damage over time; duration 10 seconds
- CB spread from Avatar to Avatar: INFECTIOUS
- CB was never meant to leave Zul'Gurub, but:
 - Infected Avatars could teleport to cities
 - Hunters could dismiss their infected pets in Zul'Gurub and later call them back –still infected- in cities

ita nuarantina maacurac

Mathematical Modelling of Populations

- 1798 Malthus: population grows exponentially, but food supply linearly, therefore catastrophe
- 1925/26 Lotka Volterra: Predator–Prey cycles
- 1927 Kermack-McKendrick "SIR" disease model
- 1977 Baroyan, Rvachev, Ivannikov (Moskau): modelling of influenza epidemics in the USSR
- Post 9/11: massive interest in disease modelling
 - Bioterrorism (smallpox)
 - Pandemics (influenza, H5N1, SARS)
- Models have substantial policy impact (stockpiling, treatment prioritities, cost-benefit)

Models: Different Flavours

- Compartimental Models (classic SIR models)
 - Deterministic
 - Stochastic
- Individual/ agent based systems (US: stochastic)
- Branching Models
- Complex models require more assumptions and parameter estimations
- "Describing complex, poorly-understood reality with a complex, poorly understood model is not progress" J. Maynard Smith (credit: Peter White)

Keep it SIRmple

- Susceptible (S): are healthy, but can be infected
- Infectious (I): are sick and infectious
- Recovered (R): recovered from disease and are immune to it
- Assumption: homogeneous mixing
- Challenge: estimate rates (arrows) from data

Transmission Rate Formula P. White

- Rate of contacting others (people/time): c
- Rate of contacting infectious: c x I (N=S+I+R)
 (I/N is proportion of infected in population)
- Rate of transmission from infecteds: $\mathbf{p} \times \mathbf{x} \times \frac{\mathbf{I}}{\mathbf{N}}$ ("force of infection", p is transmission probability)
- Total transmission rate in population: S x p x c x $\frac{1}{N}$
- S, I change with time, product SxI is non-linear

Simulation: Berkely Madonna

24C3 Modelling Infectious Diseases in Virtual Realities by Florian Burckhardt

Disease Parameters

	Measles	Syphilis	Norovirus "projectile vomiting"	Corrupted Blood
Incubation period	10 days	1-3 weeks	10 hours	0 sec
Duration of infectiousness	8 days	(1 year)	2-4 days	10 sec
Transmission probability p	95%	30%	high	100%
Immunity	yes, lifelong	weak	only against subtype	no
Mode of transmission	Droplet (airborne)	Sexually !condoms protect!	fecal-oral, droplet, fomite	magic (droplet like)

Low/Mid Level Avatar: SIRS

Resurrection = loss of immunity

- WoW: death is not permanent
- Graveyard compartment: confers CB immunity
- After resurrection, Avatars are susceptible again
- SIRS Model (or rather SIGS Model)

SIRS Model (low/mid Lv Avatar)

High Level Avatar: SIS

- Level 50+ Avatars are strong enough to survive "natural" course of infection without dying first
- However, no immunity; can become reinfected
- SIS model, "classic" sexually transmitted diseases model: syphilis, gonorrhea, chlamydia

SIS Model (high Lv Avatar)

1 Infected at start1 contact every 2 seconds80% Infected>> Infection persists

B

Susceptible Infected

- 3000 Players
- 1 Infected at start
- 2 contacts per second
- 95% stay infected
- >>>Infection persist

500 Infected at start 1 contact every 20 seconds after 2 min 0% infected >>> Infection dies out

Basic Reproductive Number Ro

- Ro ("R naught"):
 - average number of secondary infections from one single infected in a totally susceptible population
 - "how many people does one infectious person infect if everybody is susceptible ?"
- $R_0 = D \times c \times p$
 - D: mean duration of infectiousness
 - c: contact rate
 - p: transmission probability
- R0 (CB SIS) = $10 \times c \times 1$ (lenght of spell, 10s)
- R0 (CB SIRS) = 4 x c x 1 (die after 4s)

What if...

- R0: "how many people does one infectious person infect (if everybody is susceptible) ?"
- IF R₀ < 1 THEN epidemic fades out
 R₀ (CB SIRS) = 4 x c x 1 < 1

InteR₀ventions

- $R_0 = D \times c \times p$
 - D: mean duration of infectiousness
 - c: contact rate
 - p: transmission probability
- Quarantine: reduce c
- Treatment: reduce D, p
- Airborne infections: face masks can reduce p
- Relax at home: reduce c, maybe D
- WoW:
 - social distancing, stay out of cities (or on Orgrimmars rooftops)
 - "Healing" made things worse by increasing D, (Ro)
 - Reload w0rld (VR only...?)

Ro of some diseases

Disease	R0		
Measles	15-20		
Foot and Mouth Disease (FMD), UK Feb 2001	Initially 8.4; animal movement restrictions: reduced to 1.3		
Influenza	<3		
Smallpox	3-4		
HIV	2-12 (! condoms: R0<<1 !)		
Corrupted Blood (SIS)	<pre>D x c x p = 10sec x c x 1 50 (city: 5 contacts per second) 1 (countryside: one every 20s)</pre>		

Is WoW an Epidemic Simulator ?

Yes	Νο		
Largest human-agent based system	Does not model human risk behaviour, no permanent death		
Huge complexity, lots of fine tuning possible	Not representative: players do not reflect general population		
Intense social interaction	Lack of external validity		
Human decision and behavioural choices vs. computer simulations	No disease surveillance implemented		
Multiple servers allow parallel observations	Ethical approval to allow Avatar to take part in a medical trial ?		
Geographical distribution of gameservers allows study of culture-dependent behaviour			

Ideas for better virtual Epidemics I: Transmission Matrix

infects	Human	Orc	Undead	Tauren
Human	+++	+	-	+
Orc	++	+++	-	++
Undead	+++	+++	+++	+++
Tauren	++	++	-	+++

- Account for interspecies transmission
- Undead spread disease anyway...

Ideas for better virtual Epidemics II

- Reintroduce infectiousness in WoW
- Add immunity, waning immunity (!biowarfare!)
- Add vaccination
- Add incubation period
- Race specific diseases
 - Tauren: FMD, mad cow disease
 - Orcs: orchitis
 - Humans: measles
 - Elves: otitis externa (moldy ears)
- Collect & share data!

Links & References

- Short course on epidemiology of infectious diseases http://www.imperial.ac.uk/cpd/epidemiology/
- The untapped potential of virtual game worlds to shed light on real world epidemics, Lofgren ET, Fefferman NH, Lancet Infect Dis 2007; 7:625-29
- http://www.berkeleymadonna.com/
- Corrupted Blood, Wikipedia, accessed 16.11.2007, http://en.wikipedia.org/wiki/Corrupted_Blood
- Bapf
- http://www.burckhardt.de/docs.html
- All images taken for educational purposes only, Blizzard Entertainment

Onyxia says: Game On !!

Thanx to Bapf Peter White Christophe Fraser Blizzard Entertainment