Void the warranty!

How to start analyzing blackboxes

Hunz
jabber: hunz@jabber.berlin.ccc.de

Focus of this talk: HW(-SW) blackboxes

* more precise:
— non-desktop hardware, with or without software
— no analog stuff — only digital components

* Why?

— understanding the functionality
— extending/abusing it

* Examples:
— HW/SW: STBs, PDAs, ucontrollers, smartcards, digicams
- HW: RF(D), IR

motivation

* HW-only systems are less complex, but wide spreaded yet
* kind of precursor to ubiquitous computing
* people trust those blackboxes
-> they have an impact on people's everyday life
* getting access to SW requires access to some hardware
interface

* thus, hacking those systems can
<evil> be serious fun </evil> :-)
<nice> lead to a more critical view of blackbox-systems
</nice> ;-)

blueprint of a SW-blackbox

hacker's little HELPERS:

- debuggers, emulators
- (debug) symbols

- assertions
- known code/data structures
(e.g. shoxes)

m MAGIC PROCESSING m

SW-blackboxes without those helpers...

e assumption: one has access to the firmware
e question 1: What do you want to do with the system?
(understanding everything works only for simple systems)

* 2: what HW interfaces are involved in the process of interest?
* 3: find your way along this path of interest from 1n- to output

MAGIC PROCESSI

that's the theory... the practice 1s often hard and awkward work

some firmware reversal hints

* 1dentify the architecture
* problems:
— memory remapping
— uninitialized jumptables
— different CPU modes (ARM32/Thumb)
* try to get a memdump of the running firmware!
— by patching the firmware for example
— turn off ints before!
or your dump will be inconsistent!

blueprint of a blackbox as in hardware

m MAGIC PROCESSING m

* 1nput can be controlled to a certain degree
* output can be observed
* that's 1t — guess the rest...

simple example: miniature RC-car

* there's only one interesting 1C: TX6C...

* datasheet can be found via google

* there's one pin for every direction (fwd/back/left/right)
* 0 on that pin and 1t'll drive!

* direct connection to parport possible

* easy to connect to a PC via USB as well

-. : O5C1T —p Ocillag Timing
I Ciscillator Jenerato
RIGHTE |_ — i . LEFIH 0500 S {l..l.l..rl..1.1.rr

TESTE | FIB

- s
GND | Dscl RIGHTE —p
0SCO LEFTE —m

TURBOR b L_.i_ﬂ C h_) E I -;.'1'@ ing
PC FORWARDR —pf Circuit /| Circuit

BACKW ARDE Ll

FIB F2B

BACKWARDE |
FORWARDE |
TURBOB |
SC | 7

MC |

serial transmissions(l): RS232
T L

start 1 2 3 4 5 6 7 8 stop

* low speed (<=250kbaud usually), no clock (->async)
* start-, stopbit, (parity) -> bitrate = baudrate — 2 - #(parity bits)!!
* used for communication between more complex controllers that
run some kind of software
e often used for debug stuff!!
* RX: easy to spot if device sends by itself (2.4/4.8/9.6/etc. kHz)
* TX: bruteforce... - baudrate should be equal to RX
* easy to interface using a PC — don't forget the level shifters!
* usb2serial devices available — quality at high baudrate varies!!
— can be found 1n cheap cellphone-usb cables!
— no levelshifter necessary then!

serial transmissions(ll): I°C

* low to medium speed (<=400kHz), clock line -> synchronous
* two lines (SCL: clock, SDA: data) with pullups
e master-slave(s) — master initiates transfer
* used for communication with rather simple ICs (slave)
* slave 1s addressed by ID (7 or 10 bit)
(different IDs for different types of ICs)
* master often implemented 1n software: bitbanging with 2 lines
* SDA sampled on rising edge of SCL
* special bus states: START, STOP, (N)ACK
* START: SCL=1, SDA->0; STOP: SCL=1, SDA->1

serial transmissions(ll): I°C

SDA

fﬂuuuwuw 1

Oxss(w) ACK oxba ACK 0x30 ACK

* transmitter sends as long as the receiver acks

e Jast bit of slaveaddr. 1s R/nW bit (1: read, O: write)

e write means: master will send, read: slave has to send

* read from register/addr. X works by doing a dummy-write to
register/addr. X, aborting before any data 1s actually written
and doing a read afterwards

* logging can be done with parport and software if low-speed or

* a microcontroller, etc. if hispeed — more details: later!

— D> —-Wn

e

00000324
elefeleleleics]
0oooo348
elelelelele =y
00000366
QODRO375

Qoooo384

11:::1:1111:11;
jiii!laiﬂlillllll}l.

TR

?)

j) N, e iﬂ“'_
AN V.
63 03 03 03 03 03 03 01 DF FF
FF FF FF FF 81 C2 01 3F FF FF
FF 01 CD 20 13 FF FF FF FF FF
33 32 33 01 00 FF FF FF FF FF
FF FF FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF _FF FF _FF FF FF
2 R R B2 B AR LERLER L _

serial transm:&s:ons(ll)] I2C.-.,,.,Exa’ii31_pgle
video encoder: W /. ’
— used in many STBs
— one can disable macrov1s10n(1m)(R‘)'
— or enable PAL-output for NTSC-devices .
(or vice-versa)

28
28
28
28
89
28
28
89
28
28
28

b2
b4
ba
ba
38
ba
L&
a0
L&
76
7a

86
25
30

Oa

Qo
10
72

\

\ Lo

\-

| 4

ﬂ{?i?-u

m."
t] & - @
! - - 3
B § -

EIE#H

30593 !
IﬂEEH PgEEH :
’ { .Hi i*.g.
0SED _ .7
‘t.
3
GED - N -
j," c' . _': .‘._,LL.lr"'--.r"‘-.I o
= . I ey
?'IQE: : = et) O
‘a E. :
bABAAAARAANARAGE ¢
' ARy
‘ng ST
e
-
=5

serial transmissions(lll): SPI

h1 speed (several MHz possible), master/slave, synchronous

SerialClocK, MasterInSlaveOut, MasterOutSlaveln, SlaveSelect
if you find a fast clock signal it could be SCK

usually implemented in hardware

usage: similar to I12C, but higher speed

examples: radio modem ICs (sputnik! :-)), SD-cards, ADCs, 1n-
system-programmers

logging: no simple solution for hi speeds [20] [19][18] [17] [1¢]

nRF241L01

CIEM 20 4

serial transmissions(1V): ink cartridges

jﬁ LR

ock

I

* reset, data and clock lines -> synchronous (read at 62.5kHz)

* printer 1s master, cartridges are slaves

* after nRST->1: 37 bit cartridge address, 1 bit r/w, databits

* one can write arbitrary data into the chip

* for refill, one reads the data from a new, full cartridge and writes
,.tull* back once 1t's empty (that's what chip-resetters do)

* building a fake-chip is also possible with a tiny microcontroller

wireless transmissions: 433 / 868 MHz

e such devices include: doorbells, mains switches, dimmers, air-
pressure sensors, temperature sensors, fire alarms, burglar alarms

* different encodings (Manchester, NRZ, ...)

* different IDs — usually 7-12 bits

* simple en/decoders — example: PT2272

* easy to sniff using a €5 wireless doorbell

D'OH!

* sniffing helpers:
— your ears
— soundcard

wireless alarm system (€ 39.77)

{ let's hack this one... ;

McGyver-style! :-

:
:
A
<

=(

T work

didn

-
ey
=
=
il

b

L
e
==
=
T

S es o

2
(v
2
O
2]
-
D
s.

4> DIMMER

INALS

;

so don't take it off the wall! %-)

looking at the signal

* audacity used here
* sent 1n case of alarm event
e | startbit, 4 addr.bits, 7 foobarbits
(same for both sensors)
* return to zero signal coding -> Manchester
* boring, the fun wasn't worth the 40 bucks ;-(

similar fun: infrared!

* carrier frequency < -

— common: 30-38, 445kHz - smfflng effort depends on
the carrier!

* can be used for async. serial transmissions up to 2.4kbaud

* look for daylight filters! (black or dark red)

* where can you find IR transmissions?
Hif1 remotes, RC-vehicles,
drink/etc.-automats,
public transfer :-}

* use your cellphone-cam! ’

-

o, —

I
E
M I' ~

IR devices

back (in)to more complex devices:
memory interfaces

* parallel, usually 8/16/32 databits, control- (nReaD, nWRite) and
* addresslines (may be multiplexed with datalines)
* used to access Flash-memories

-> you can also use it to dump the software!
* often high speed (xx MHz) — makes tapping more complicated
* with some fiddling you can dump them without costy hardware!
* read the datasheet, use your parport or a microcontroller

weapons of choice

* for the analog part: oscilloscope!
* expensive, but useful — at least to get a first impression of signals

e low-cost ,,substitutions*’:

— soundcard (48 / 96kHz (H

) sampling, 2 channels)

— ADC of AVR ucontrollers: 666.666 kHz sampling rate

((16MHz/2)/12)

* great: 10bits, up to 200x gain -> few uVolts precision!
* sufficient to use a IR-diode without analog amplification!

* for the digital part: logic analyzers
* TOO expensive! put something together yourself
* every problem is different -> custom hacks necessary

D'OH we need hard realtime...

e PC parport: (n)nn kHz sampling, but: up to 2MByte/s with ECP
* use a ucontroller if possible, a CPLD/FPGA 1f necessary
— AVR 8bit: slow but easy, great for hard realtime
— ARMY7 32bit: LPC/AT91 — fast, hard realtime not that easy
(pipeline, caches)
 use aringbuffer! use a overrun indicator!
or you'll waste hours analyzing crap-data!
* data transfer:
— RS232: 115.2kbaud -> ~9kBytes/s
— full speed usb: ~1MByte/s, hi speed: <60MByte/s
— PATA: up to ~130? MByte/s, SATA
— ethernet doesn't make any sense here

questions you should ask yourself first

 how much data do I want to log? how many signals?
— no fast interface 1s necessary if it fits completely into a buffer!

e what's the maximum speed of the signal?
— how do I get an appropriate samplerate?
— what interface do I use to transfer the data to the PC?

* how do I store the data in the buffer? how do I send it to the PC?
— do you have enough processing power to store it that way?
— do you have enough throughput to send it that way?
— example I?C: 1 vs. 4 samples per byte

finding answers

* how much data? answer: count the transitions!
— hardware counter of a microcontroller 1f fast enough
— hardware counter using logic else

e maximum speed? answer: min. time between 2 transitions!

— hardware timer of a microcontroller if fast enough
— hardware timer using logic else

* in general:
— fast, simple stuft -> job for hardware
— slow, possibly complex stuff ->job for software

don't panic: the timer in VHDL

process(CLK, RST)
begin

== reset
if RST="1" then

CLK DO

TMN <= (others => "1°);
LASTSIG <= SIGIN:
TIMER <= (others => '0');
elsif CLK'Event and CLK="1" then | DCK
LASTSIG <= SIGIN: -- still valid in this evclel

-- signal changed
if LASTSIG /= SIGIN then RST

TIMER <= (others => '0'). -- same here

== new rin
" > e e RUN

erd if;

elsif TIMER /= "11111111117 then
TIMER <= TIMER + 1.

ord SIGIN

ernd if; -- clk

end process,

XCO572XL: speed ~66MHz, 50-75% logic usage

analyzing the results

e) PRV

custom visualizers for signals can be easily put together using
SDL_ng
* 1f you want to write a picture from your data,
have a look at the pbm format (ASCII header + raw data)
* print the stuff that drives you nuts to paper!
* use crayons of several colors to work on the signal(s)! :-)

conclusion

* there are a lot of simple, proprietary devices out there
* they have little to zero security features
* they rely on security by obscurity
hackers are computer-guys - no one will notice this ever!111
* hacking them 1s simple, though funny
e doit! ;)

WWG'0=NY = .:_____—:J/___f;_h? 2

RIS E—NT)

5 '.: A

L . ﬂﬂl"r :‘?'.f" -
L RL U ATMEGAS 2. T e '
- 164U 06128 - § 3

- e

