The Rise and Fall of Open Source

Or: forkbombing an OSS community project

Tonnerre Lombard

Nov 5th, 2006

1 Product overview

In the beginning, there was the source. There were no regulations whatsoever
on it, so it was de facto free. The source code of almost all software projects
was freely available on the newly created internet, and was shared on tapes
between companies and universities. All gained knowledge was contributed
back into science and research.

It was only in the late 70s that a different paradigm started to come
up. Commercial software was being developed in large amounts by compa-
nies who refused to contribute back to the community they benefited from.
However, the open source movement prevailed and grew larger over time.
Documents were written and books were published in order to describe the
paradigm which came as a big surprise to most of the upcoming information
technology corporations.

However, over time, Open Source became involved a lot in the competition
that was caused primarily by the burst of the dotcom bubble. Suddenly, a
lot of IT companies were fighting for their lifes, and Open Source lost a lot
of corporate support. Suddenly, a lot of projects had to come up with their
own resources and advertisement.

Another thing to observe during the time was that a lot of projects started
forks for dubious reasons. This lead to a major vacuum of resources. Also,
some projects forked off a variety of child projects, consequently undermin-
ing all efforts to create an useful product. In a vast amount of areas, the
closed source products overtook the open source counterparts in terms of
functionality because innovation was basically stalled.

This had severe implications. While the «unanimous» Open Source browser
FireFox is still leading the browser market (because Microsoft has failed to
catch up with the features so far - this might change with the arrival of Inter-
net Explorer 7), thus marking itself as a flag ship of Open Source technology
along with OpenOffice.org, Open Source systems have lost a big market share
in different areas, where the competitors simply brought up better products.
These areas are usually covered with a vast amount of Open Source projects,
none of which provides the required features. This is also one of the major
reasons why a big share of the embedded market was lost to VxWorks.

In 2006, we were facing probably the most massive thinning of Open
Source projects so far. But maybe for the first time, even a significant number
of major projects ran into a similar crisis. Now that the problem has already
reached the backwaters of the seas of Open Source, it is time to look deeper
into the reasons.

2 Strengths

The biggest and most advertised advantage of Open Source is, of course, that
it gives every single person in the Internet (and elsewhere!) the possibility to
contribute to the best of their ability. If anyone finds that a line of code in
the entire source tree ought to be changed, he can check out the source, make
his change, test it and then decide whether to publish a patch or whether to
keep the change to himself. Keeping it to himself can also be an intelligent
choice in cases where the change is mainly an adaption to the local system
of the user.

However, there is already a resource drain happening in this place. Most
of the Open Source developers will know these people who find a bug, fix it
and forget to send in a patch, because they’re busy fixing applications left
and right while the one which broke was actually in the middle. So it would
be wrong to assume that even a majority of patches ever see the light of the
day.

Another thing that happens from time to time is that the developer or
group of developers around a project decides not to accept the patch. In
this case, the patch will be changed, abandoned or converted into a new
concurrent source project. In the last case, the submitter of the patch or
sometimes even a heavy user of it takes the original source code, applies the
patch and publishes his source tree along with the changed documentation

on a different place. This process is called forking.

Another advantage is, of course, that Open Source software is usually not
tied to any marketing strategies (however, in some cases, it is). This means
that there’s usually no pressure on the maintainers to get the product out
on a certain date that marketing has announced, or with specific features.
In the closed source world, products are usually fixed for a certain date and
have to come out that same day in the early morning, no matter whether
it has passed thorough tests before that time or whether there are even still
known bugs in it.

This, however, doesn’t mean that a roadmap for Open Source projects
would have to be considered impossible. In fact, it is very well possible to
promise a certain functionality for a certain date. This promise can only be
made on the basis of what the core developers of the project are capable
of creating until that date. There is however the possibility of a «positive
surprise» if more developers join in, because suddenly you deliver more func-
tionality than you originally promised.

Another advantage of this dynamic development model is, of course, that
you are free to release patches or bugfix releases at any point in time. When-
ever a bug occurs, it is very likely that the person discovering it has already
come up with a patch for it, and if not, it’s usually not hard for a dedicated
group of developers to find it. Once the bug is fixed, the patch/bugfix release
goes out and gets implemented quickly by the users and distributors.

The last advantage that is going to be mentioned here is motivation. Open
Source is normally volunteer driven and sometimes supported by companies.
This means that all contributors are usually highly motivated to produce
their software, which makes them more focused on the issues. A wise man
said that a man defending his house and family outmans 10 paid soldiers.
This is also the case in the software industry: Open Source producers usually
work a lot faster than paid developers.

However, like always in life, some of these advantages have their down-
sides.

3 Exploiting the paradigm

Forking off software involves a serious decision. In fact, forking software can
almost be compared to a divorce: all the goods get divided and distributed in
some way over the two development groups. The household or maintenance

cost however remains the same for both parties. Also, a fork means that both
groups have to readjust their equipment, because usually they lost some of
it to the «other group».

Probably the biggest reason people see to fork a project is the fact that
developers tend to disagree on a lot of things. Usually, it all starts with a clash
of interests. Some developers decide that they don’t want to continue the
development of their product under the current circumstances. The reasons
therefor are various and thus covered in the next section.

Open Source is in itself designed to make concurrent development from
independent parties as simple as possible. Thus, most of the tools of today are
designed to allow a code base to be cloned easily. The most modern source
control systems go even further and omit the implementation of a central
server.

This is good if some developer goes on vacation and takes his laptop with
him - (s)he can make incremental changes and develop concurrent features
without needing an internet connection. After a while, the changes can be
merged back into the head revision individually. The developer gets the com-
fort of a source control system without the need for a permanent connection.

This does also mean, however, that the cost involved in forking off a new
project is significantly diminished. In fact, it is already built into the modern
source control systems. A working revision of a repository is in fact a fork of
it, and each source mirror could be used for concurrent development. Thus,
a fork mostly happens by someone mirroring the tree and putting it online
in some other place.

But at this time, the doubling of maintenance cost which was mentioned
above kicks in. This means that less resources are available to do actual
innovation and more resources are required for fixing security holes, janitorial
tasks and normal bug hunting. Depending on the number of people working at
the project, this can mean tat innovation is slowed down significantly, halted
or even negative — if insufficient resources are available for basic maintenance,
the project becomes gradually unuseable.

This is of course quite useful to the closed source concurrence. If innova-
tion of an Open Source project is effectively stalled, it is easy to reproduce
all features provided by the software and add just a few new ones or clean up
the interface, so people will go for the commercial product because it is, from
any point of view, better. It is indeed very hard for the closed source software
selling companies to compete with a vivid Open Source project, because the
stream of innovative ideas in the Open Source community is indeed much

4

stronger than it is in the world of closed source development.

In such cases, it might prove very effective for a closed source software
producer to send someone out to contribute to an Open Source project. At
some point in time, they might decide that it has now reached a business
compatible state. At this point, they might provoke a fork of the project by
exploiting the psychological vulnerabilities outlined in the following chapter.
Once the community is split and everyone is forced to decide which part of
it he belongs to, it is very hard to undo the split because most of the time,
the fork also involves a lot of hostilities.

At this point, the closed source vendor only has to reproduce the current
functionality of the product and give it a new design — yes, a lot of Open
Source user interfaces suck. The vendor ends up with a best seller, and the
Open Source community earns, well, nothing.

4 Vulnerabilities

There is a very simple set of common disagreements that seem to be consid-
ered severe enough to start a fork.

In some cases, developers simply disagree over the adoption of a new
technology into the project. In these cases, some developers decide that the
new technology is useful to the aims of the project, and want to embrace it
immediately in order to make the project as a whole more fancy. However, the
other fraction of developers usually doesn’t like the idea of adopting the new
technology, and doesn’t see any point in doing so. This group then decides
against the use of the new technology.

Most of the time, the majority group decides the way the project will
go, and the minor group either accepts the decision, or forks off a child
project which embraces the opposite of the decision. However, in some cases
the minority tends to win because they’re in control over the servers or the
release engineering process. In these cases, a fork is much more likely, of
course.

Another possible case is when developers disagree over the use of a source
control system. Some projects have been developed historically on the grounds
of CVS, but suddenly a group thinks that, for example, Subversion is a much
better acronym for their source control. At some point, the Subversion group
might decide to fork off a child project which does the same development,
but on a Subversion server.

Yet another technical reason is for example what happened in the case
of XFree86 and X.Org. In this case, XFree86 was lead by a small core group
which decided which patches are allowed to go into the main distributions
and which don’t. There was even a dictator of the whole tree: David Dawes.

In 2003, a group around Keith Packard continued to restructure XFree86
in order to reflect the state of the art of current graphics cards (especially
the acceleration architecture). The idea was also to split XFree86 into small,
individual projects which can be upgraded independently, rather than having
one monolithic tree. However, the rest of the core team didn’t like the idea,
and after some issues, Keith was ejected from the team for «conspiracy». At
this point he decided to create a real conspiracy, and forked off the X.Org
project. X.Org received vital updates that the XFree86 project refused and
was soon accepted by all distributions as the new X server for UNIX like
systems®.

This type of forks, which are done because innovation was stalled by a
not-so-benevolent dictator, are probably the only positive reasons to do a
fork.

However, the probably worst reason to do a fork is personal dissent. There
is a number of «alpha geeks» out there, and some of them don’t like each other
because they feel that instead of cooperating, they ought to be competing.
Sometimes this leads to rapid evolution, but sometimes this leads to forks.

It seems that there are plenty of reasons for developers to start disliking
each other. Sometimes there was a personal tragedy, sometimes it’s just that
the community shows more understanding for the one than for the other.
Usually, this leads to envy, envy leads to a technically minor clash and this
clash leads to a fork. This fork usually has the consequence that two groups
try to fight each other, which decreases innovation dramatically.

Even though these disagreements are so simple, though, it seems that the
majority of people aren’t paying enough attention to them and trying hard
enough to get out of their way.

LCurrently, only NetBSD and MirOS still use XFree86. NetBSD uses it optionally due
to its size and MirOS due to dissent of the maintainer.

5 Similar vulnerabilities

5.1 Rewrite competitors

Sometimes, the newly raised competition to Open Source project isn’t raised
from the project itself, but from people who disagree with the original project
and start up a rewrite. In these cases, the impact is even higher. Not only
are resources drained from the first project because people tend to run over
to the other one, but the entire development effort is duplicated.

Probably the worst example of this is OpenSSL with its rewrite com-
petitor GnuTLS. OpenSSL is a full cryptographics implementation which
includes implementations for the standards SSLv2, SSLv3 and TLS. It is
BSD licensed and due to its ease of use, it has been the default SSL imple-
mentation for Open Source projects for years.

However, there was a group of people who got annoyed with the fact that
due to regular security audits, OpenSSL had to be upgraded every now and
then because security holes were found. Also, they didn’t like the fact that
OpenSSL was under a BSD license rather than the GNU GPL. Thus, they
created GnuTLS and the gcrypt API. However, most of their implementations
aren’t properly audited yet, because the GNU philosophy doesn’t require ex-
tensive audits of the GNU software. The GNU people believe in the thousand
eyeball principle, and thus believe that merely publishing their API will give
it the required audit.

Howeer, the knowledge about proper SSL implementations which has been
gathered over the years by the OpenSSL team isn’t given in the GnuTLS
team. GnuTLS is currently showing just about the same vulnerabilities that
OpenSSL did during its very first years. Cryptography is a very difficult
matter, and some vulnerabilities simply consist in a difference between the
time of connection setup and the time that an error message is returned.

Even worse: while OpenSSL tries to create a transparent read /write API
for the programmer so he doesn’t need to be aware of SSL and its implemen-
tation details, GnuTLS attempts to be more low-level, so a lot of developers
are required to gain a certain knowledge of cryptography as well, which they
can’t possibly be trusted to get right. This is probably not a good idea, and
it is mainly caused by the fact that the profound knowledge that went into
OpenSSL was simply neglected, rather than extended.

6 Threat mitigation

There are a lot of things that can be done to mitigate the threat of a project
fork. For the developers, for example, it is very important to differenciate
between personal dissent and technical problems. A lot of forks are done
based on personal dissent, while technically it would have been better for the
project (and the community), if no fork had been done.

Another thing to do on the developer side is basically diplomacy. There’s
no reason to insult people on a personal level if they just made a technical
mistake, and there’s no reason to insult maintainers on a personal level merely
because they weren’t content with your changes. Even though this type of
insults may appear to be «cool» to some people, they actively serve to drive
a developer community apart.

But there are also things maintainers can do specifically. It is, for example,
a great relief on the pressure to fork, if different experimental branches exist,
where different «new things» can be tried, or different optimizations can be
made. In most cases, some of these branches will prove worthwile, and can
simply be merged into the stable branch after thorough testing. There’s just
no «one and only way» of doing things. People will do things their way,
and if you try to stop them from doing that, you might lose them entirely.
Remember, a different tree from one project isn’t as much damage as a fork.

In the real world, there is already an established mitigation model in a
set of projects: the BSD community. There are several BSD projects which
seem to be competing to an unknowing audience, but in fact there is a lot
of cross development. The BSD community does something which could be
called managed diversity. There are several projects which have specialized
for different operating areas: OpenBSD, which is a BSD operating system for
routers, NetBSD, which is for desktops and embedded platforms as well as for
platform independent applications, and FreeBSD, which works as an entry
point for people migrating from Linux environments, and has specialized on
x86 based workstations.

Besides the three mainstream projects, there are a number of parallel
projects which are mainly customizations of one of the main projects (Desk-
topBSD and PC-BSD, the FreeBSD clones with an Ubuntu like flavor, pf-
Sense, the FreeBSD/OpenBSD embedded router for home and small office
use, DragonFlyBSD, the micro kernel FreeBSD clone, etc.)

The point of these BSDs is that there is a certain type of optimization,
but there is also a lot of cross development taking place. For example, de-

vice drivers are normally reverse engineered by the OpenBSD people and
ported to FreeBSD and NetBSD, or ported from Linux by FreeBSD and
from there to OpenBSD and NetBSD. However, FreeBSD does, for exam-
ple, lack a strict server infrastructure, which would be pointless to have on a
desktop. OpenBSD, on the other hand, isn’t that heavily equipped with load-
able kernel module support (which is much more advanced under FreeBSD),
because on a server, LKMs are a bad idea in the first place.

This way, the specialization and customization of the projects is still
given, while the overhead of development induced by the separation of the
projects is fairly low, leading to a vast amount of resources available for
innovation.

This method of mitigation has already been stress tested several times.
The last stress test was performed by Charles Hannum (mycroft) on the
NetBSD project?, and it went perfectly well. In fact, it created a counter
movement to the original message (NetBSD is dead), by calling out for two
bug fixing and a current release rebranching session, all of which seem to
have gone well, making the NetBSD project even more healty and vivid.

7 Discovered by

Tonnerre Lombard <tonnerre@bsdprojects.net>

2http://mail-index.netbsd.org/netbsd-users/2006,/08/30,/0016.html

