
Abstract
Virtualization is complex. In cooperation with
the host operating system, the Virtual Machine
Monitor takes over complete control of the
machine hundreds of times a second, handles
pagetables completely manually, and may
chose to wire (make-non-pageable) as much
memory as it chooses. This paper explains why
it still works.

Motivation
In 1999, VMware was the first virtualization
solution for x86-based computers. Even 7
years later, there are only three competitors:
Microsoft with VirtualPC (architected by Dy-
namic Recompilation pioneer Eric Traut who
did Apple’s 68K to PowerPC Recompiler) and
that obscure Russian company that seems to
have offered the same product under 3 different
names (SVISTA, 2ON2 and now Parallels).
Kevin Lawton, the creator of the x86-Emulator
Bochs started an Open Source virtualization
project called Plex86 (originally FreeMWare) -
but it basically failed. Only recently, the Open
Source QEMU project, which started as a re-
compiler, has been gaining execution speeds
into the direction of VMware, by implementing
some of VMware’s methods.
This paper first summarizes some basic operat-
ing system features, like scheduling, managing
page tables, and providing a system call inter-
face, in order to have a common basis that can
be talked about.
The main part is about the tricks a conventional
virtualization solution has to apply to run the
guest operating system as a user mode process:
The virtual machine monitor (VMM) has to set
up address spaces for guest code, handle nested
page tables, switch between the host and the
guest(s), trap I/O accesses, and help cooperate
in memory management between the host and

the guest(s).
The third part of the paper explains why the
x86 architecture is not strictly virtualizable,
what tricks VMware, VirtualPC and Parallels
use to still make it possible, and in what way
Intel VT (Vanderpool) and AMD SVN (Paci-
fica) help to make x86 virtualization easier or
possibly more efficient.

Operating Systems
While “virtualization” might sound like a very
modern and therefore “hot” piece of technol-
ogy, it is actually quite old: Operating systems
virtualize the machine by providing each of its
processes a virtual CPU, virtual memory and
virtual hardware (in the sense of kernel func-
tions).
Multitasking
In the 1960s, computers usually did batch jobs
that took hours, reading the input from tape,
and writing the results back to tape. Since the
tapes were slow, the CPU was basically wasted
while the program was reading data from or
writing data to tape and therefore waiting, as
the CPU would have been independent to do
other tasks in the meantime.
Attaching two tape drives and running two jobs
at a time significantly optimized the load of the
CPU: If one so-called process is blocked (be-
cause it is waiting for data from the tape drive),
the CPU can be switched to the other process
and perform calculations there. Also, if one
process uses the CPU for too long, control can
be migrated to the next process, in order to
have a fair division of the CPU for the proc-
esses, regardless of the amount of I/O they per-
form.
Multitasking, which gives each process its own
virtual CPU, can optimize the usage of the
CPU if the processes do a lot of I/O.

Michael Steil

Inside VMware
How VMware, VirtualPC and Parallels actually work

CPU Modes
As different processes should not be able to
influence each other, there must be an operat-
ing system to arbitrate. The CPU needs to have
two modes: user mode and supervisor mode
(kernel mode). Process run in user mode and
therefore don’t have full control of the ma-
chine. Only the operating system runs in kernel
mode, it manages the processes and has there-
fore full control of the system. Each process
can run as if it was the only one on the ma-
chine.
Syscalls
All instructions that change the overall state of
the system (privileged instructions) do not
work in user mode, they trap, i.e. they generate
an exception, which means, the CPU will
automatically switch into the kernel, which can
then decide what to do. Usually user mode
programs avoid execution of these privileged
instructions; instead, they explicitly call the
kernel for specific functionality, using syscalls:
A syscall deliberately switches into kernel
mode, calling a specific function of the kernel,
which will then return to user mode.

Scheduling
The kernel will set up to a timer that interrupts
execution of user mode code typically about
100 times a second. Every time such an inter-
rupt occurs, the CPU switches into kernel
mode, and the scheduler, which is a part of the
kernel, decides which process to run next and
switches back to user mode. The time between
two scheduler runs is called a time slice.
Virtual Memory
While in order to protect processes from each
other, it would be enough to have a base and a
limit address of memory that it can access for

each process, it is a lot more flexible to use
paging: For every 4 KB “page” of memory,
there is a mapping from virtual memory (the
memory as the process sees it) to physical
memory (as the address leaves the CPU for the

Process

Hardware
Interface

Operating System
Hardware
Interface

Hardware

virtual
Hardware

Process

Hardware
Interface

virtual
Hardware

Process

Hardware
Interface

virtual
Hardware

Process

Hardware
Interface

Hardware

Time

RAM

I/O

Time

RAM

I/O

Time

RAM

I/O

trap
scheduler

syscall
access violation

Time

Process 1 Process 2 Process 2Process 1

Timer Interrupt Timer Interrupt Timer Interrupt

Time Slice

Sc
h
ed

u
le

r

Sc
h
ed

u
le

r

Sc
h
ed

u
le

r

Timer Interrupt

Address
Space

1

00000000

FFFFFFFF physical
Memory

Address
Space

2

00000000

FFFFFFFF

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x

x

x

memory chips). This way, two processes can
both have their code at (virtual) address
0x1234, but effectively use different parts of
system RAM.
These mappings are stored in page tables.
There is a set of page tables for every process,
and on a context switch (as the scheduler
switches from one process to the next one), the
set of page tables gets switched.

Virtualization
Although strictly speaking, operating systems
already implement virtualization, in today’s
context, virtualization means running multiple
operating systems at the same time. These op-
erating systems are separated from each other,
cannot influence each other and don’t even
know about each other. So an OS can no longer
have full control of the CPU.
Hypervisor Mode
In order to disempower kernel mode (supervi-
sor mode), some CPUs therefore introduce a
third mode, called hypervisor mode: Hypervi-
sor mode has full control of the CPU, and the
Virtual Machine Monitor (VMM) runs in hy-
pervisor mode and arbitrates between operating
systems. If hypervisor mode is enabled, kernel
mode will no longer have full control of the
CPU.
While the interface between user mode and
kernel mode will still be the same, there is now
a new interface between kernel mode and hy-
pervisor mode: All privileged instructions is-

sued by the kernel (in kernel mode) now trap
into hypervisor mode, and the VMM can then
emulate the desired behavior. This method is
called “trap and emulate”. All page table ac-
cesses, I/O accesses and (virtual) system
crashes will be handled this way.
An example of a CPU that implements a hy-
pervisor mode is the IBM PowerPC 970, also
known as G5. The architecture of Intel VT
(Vanderpool) and AMD SVM (Pacifica) is also
close to the hypervisor mode approach.
No Hypervisor Mode
But many architectures don’t have a hypervisor
mode, like the PowerPC G4 or the x86 line be-
fore VT/SVM. Every kind of protection in
CPUs is always also possible with only two
permission levels. The idea is to run the VMM
in kernel mode, and push the guest kernel up
into user mode. This way, only the VMM will
run in the privileged mode of the CPU and
have full control of the hardware.

OS

Hardware
Interface

Virtual Machine Monitor

Hardware
Interface

Hardware

virtual
Hardware

OS

Hardware
Interface

virtual
Hardware

OS

Hardware
Interface

virtual
Hardware

OS

Hardware
Interface

Hardware

P
ro

ce
ss

P
ro

ce
ss

P
ro

ce
ss

P
ro

ce
ss

P
ro

ce
ss

P
ro

ce
ss

P
ro

ce
ss

P
ro

ce
ss

P
ro

ce
ss

Supervisor Mode

Hypervisor Mode

P
ro

ce
ss

P
ro

ce
ss

P
ro

ce
ss

trap
scheduler

syscall
page fault

access violation

trap
scheduler
pagetables

I/O
crash

User Mode

Hardware

OS

Hardware
Interface

Kernel Interface

Process

Kernel Interface

Virtual Machine Monitor

Hardware
Interface

virtual Hardware Trampoline

scheduler
syscall

page fault
access violation

scheduler
pagetables

I/O
crash

! lgdtl!0x00005002

! lidtl!0x00005012

! movl! 0x0000e008,%eax

! movl! %eax,%cr3

! movl! %cr4,%eax

! orl! $0x000000e0,%eax

! movl! %eax,%cr4

emulate_lgdt();
resume();

emulate_lidt();
resume();

emulate_movtocr3();
resume();

emulate_movfromcr4();
resume();

emulate_movtocr4();
resume();

Trap

Trap

Trap

Trap

Trap

K
er

n
el

 M
o
d
e

p
ri

vi
le

gi
er

t
p
ri

vi
le

gi
er

t
p
ri

vi
le

gi
er

t
p
ri

vi
le

gi
er

t
p
ri

vi
le

gi
er

t

Just like in the scenario with hypervisor mode,
all privileged instructions in the guest kernel
will trap into the VMM. For traps in user
mode, it is different: All traps in user mode,
including syscalls, will make the CPU switch
into the VMM code in kernel mode. The VMM
will then have to manually emulate this func-
tion, switch to the guest’s kernel mode and
move execution to the according handler.
Scheduler
The following paragraphs assume that the
VMM is running on an existing OS, like
VMware Workstation, Virtual PC and Parallels
Workstation/Desktop do it, as this is the more
interesting case. The bulk of the logic is in the
user mode application (for example
“vmware.exe”), but some operations can only
be carried out in kernel mode. These reside in
the kernel module that is shipping with each of
these solutions (vmmain for VMware, vmmon
for Parallels). For example, all decisions can be
made by the user mode part, while all changes
to the state of the CPU, like switches between
the host and the guest, can only be carried out
in kernel mode. The commercial virtualization
solutions for Linux hosts also try to run as
much code as possible in user mode, because
they have to open source their Linux kernel
module and thus all their kernel mode code.
Every guest OS will behave like an application
on the host operating system and be scheduled
against other apps; to the host kernel, the user
mode application (“vmware.exe”) is the repre-
sentative of the virtual machine. This user
mode application will donate its time slices to
the virtual machine: Every time it is assigned a
time slice, it will switch into the guest context,
and at the end of the slice, a switch back will
occur. These are called world switches.
For a world switch, the VMM user mode com-
ponent calls the VMM kernel mode compo-
nent, because a world switch can only be done
in kernel mode. The kernel mode component
will then
• switch the register set
• switch the interrupt/exception vector set
• switch the page tables
So the complete host context is saved, and the
guest context is loaded. The kernel mode com-

ponent will then switch into user mode and
jump to the guest code.
A very small part of the VMM kernel mode
component will remain mapped into the guest’s
address space, and all interrupt/exception vec-
tors point to this code, so that it can catch all
interrupts and exceptions.
The guest code will execute until the next in-
terrupt or exception occurs. This can be a privi-
leged instruction that the guest kernel tried to
execute, a syscall of user mode code, or simply
a timer interrupt indicating the end of the time
slice. As all interrupts and exceptions will be
caught by the VMM kernel mode component,
it will switch the register set, the interrupt/
exception vectors and the page tables back, and
in case it was an exception caused by the VM,
the reason will be passed up to the VMM user
mode component, which will then decide how
to handle it. If, on the other hand, it was a
hardware interrupt, the VMM kernel mode
component will pass this information to the
host kernel. In case of the scheduler, control
will be taken away from the current process
(the VMM) and handed to the next process.
Virtual Memory
Since the virtual machine must behave like a
real machine, memory must behave the same
for all code running inside the VM, so both
user mode and kernel mode must see memory
as it is supposed to be mapped.
Just passing through page table entries from
inside the VM to the physical system is not
possible, because all operating systems think
they can target physical pages starting with
page 0, so they would map their virtual pages
to the same physical page.
Therefore every page table access in the VM’s
kernel traps into the VMM, which will then
create a mapping that has the same effect, but
uses a different page - managed by the VMM.
Also, if the guest kernel reads back the page
table entry, there will also be a trap, and the
VMM has to present the original (instead of the
effective) value. The effective page tables are
called “shadow page tables”, and the whole
method is called “two level paging”.
When the guest wants to map a new page, the
VMM kernel mode component will ask the

host operating system for a page of memory,
which the host kernel will then map into the
VMM’s address space. The VMM can read the
page table entry that was just created by the
host operating system and find out what physi-
cal page it was given. This physical page can
then be used inside a VM.
The host kernel may never take this page away,
because it is unaware of the fact that the page
is still used inside the VM as well - after all,
the VMM assigned its own page table map-
pings to this page for some VM. Therefore the
VMM must mark the page as “wired”, so that
the host kernel will never take it away and put
it into the paging file on disk.
Unfortunately, this would mean that paging out
VMs isn’t possible. While rarely used memory
pages of ordinary applications will be moved
from RAM into the paging file in order to free
up some memory in case memory runs low, all
the wired pages of a VM cannot be paged out.
This can be solved by having a special “mem-
ory pressure” interface between the host kernel
and the VMM: If system memory is low, the
host kernel can tell the VMM, which will then
look at its page usage statistics inside the VM
and unmap a page from the VM. This page can
then be “unwired” so that the host kernel can
page it out. The next time the VM accesses this
page, it will trap into the VMM, which will
then be able to map the page back, according to
its internal accounting structures.
But making the guest kernel trap on page table
accesses might not be as easy: Page tables are
normal data in memory, and while switching
page tables, i.e. loading the pointer to the root
page table is a privileged instruction that will
trap when issued in user mode, accessing page
table entries just means accessing memory, and
it won’t trap. The trick to still make these ac-
cesses trap is to mark the pages the page table
entries reside on as invalid on the shadow page
tables.
I/O
As all code inside the VM runs in user mode,
all I/O accesses will trap into kernel mode, i.e.
the VMM. The VMM will then find out the na-
ture of the hardware access, fake the hardware
and return to the guest. For example, if a guest

asks the PS/2 mouse for its state, the access
will trap to the VMM, and the VMM will
communicate the current mouse state (in the
PS/2 protocol encoding) to the guest, based on
internal information about the emulated mouse.
If a virtual device is supposed to generate inter-
rupts when new data is available, the VMM has
to inject an interrupt into the VM by emulating
exactly what would happen in case of an inter-
rupt on a real machine: The next time the VM
will be resumed, it will be in kernel mode, at
the location specified by the (virtual) interrupt
vector. This is also the way the scheduler inside
the guest works: The guest programs the virtual
timer and interrupt controller to generate peri-
odic interrupts, and the VMM will inject inter-
rupts into the guest from time to time.
Unfortunately, this method is quite slow for
many devices, especially video, because the
guest’s driver and the VMM have to communi-
cate in the language of the hardware protocol,
which may be efficient for real hardware, but is
not for interfaces between two pieces of soft-
ware. Therefore, virtualization solutions typi-
cally provide special drivers to be installed in-
side the VM that either use special assembly
instructions or I/O regions which are unused by
a real machine to directly communicate with
the VMM, using a very efficient high-level
protocol.

x86
As pointed out above, having a hypervisor
mode in a CPU is useful for virtualization but
not strictly necessary. But there is one neces-
sary requirement for a CPU to be “strictly” vir-
tualizable: All privileged instructions must trap
into kernel mode when used in user mode -
they may not just behave differently. Otherwise
the guest kernel cannot be run in user mode, as
it could use assembly instructions that cannot
be trapped and emulated, so the kernel would
just behave differently when in user mode. The
kernel would just not work.
Unfortunately, this is the case on the x86.
There are several instructions that behave dif-
ferently in user mode than in kernel mode, in-
stead of causing a trap. For example, a user
mode application could ask whether it is run-

ning in kernel mode or user mode, and it would
get the answer “user mode” without any
chance for the VMM to intercept this instruc-
tion and return the fake answer.
Therefore, the x86 CPU is not “strictly” virtu-
alizable. But as every Turing complete ma-
chine can emulate every other Turing complete
machine, running an operating system on top
of another one is definitely possible. Bochs for
example emulates an x86 PC by interpreting
the x86 code instruction for instruction - at the
expense of speed. Recompilers translate source
assembly code to target assembly code, and are
a lot faster.
The trick that is used by all x86 virtualization
solutions is to recompile (“binary translate”) all
potential sensitive code, i.e. translate all x86
assembly code that is problematic, because it
does things that should trap but do not trap into
code that has these instructions replaced with
explicit traps into kernel mode.
All user mode code of the guest will also be
executed in user mode, so all this code can be
run natively. But all kernel code of the guest
must be checked before it can be executed. As
in dynamic recompilers, the code is split into
“basic blocks” (a block of contiguous instruc-
tions up to the next control flow instruction, i.e.
jump, branch, call, return), and these basic
blocks are then verified. If they don’t contain
problematic instructions, they can be executed
verbatim, otherwise these instructions will be
replaced by a call into the VMM.
All code that has been checked once does not
need to be checked again, and a set of basic
blocks that reference each other can be put to-
gether to a bigger block that can execute verba-
tim without future checks. Furthermode, the
explicit traps can be translated into code that
does the required function inline, without
switching to the VMM: The instruction to find
out the mode the CPU is in could be replaced
by an instruction that loads the constant repre-
senting “kernel mode”.
But the disadvantage of having so much extra
work to do (basic block accounting, translation,
basic block linking etc.) leads to an advantage:
Having all this infrastructure in place, the re-
compiler (on certain operating systems) can for

example replace the instruction the guest ker-
nel uses to return to user mode after a syscall
(sysexit, sysret or iret) with code that just
jumps to the guest user mode code. On a hy-
pervisor mode trap-and-emulate solution, a sy-
sexit would require a context switch (from ker-
nel mode into user mode; just like on a real
machine), and on a kernel mode trap-and-
emulate solution, it would require two world
switches (from the guest kernel into kernel
mode, and back into guest user mode).
Another trick documented by VMware is this:
There is usually no code block inside an oper-
ating system with a memory access instruction
that sometimes accesses page table entries and
sometimes accesses other data in memory. An
instruction that writes a page table entry will
always write page table entries. So as soon as
such an instruction is identified (by making it
trap using an invalid page), it can be translated
inline to an explicit hypervisor call, which can
be a lot cheaper than a trap.

VT and SVM
Both Intel and AMD understood the need for
virtualization today, and that virtualizing the
x86 is painful. Therefore they introduced very
similar but incompatible technologies in all of
their main-line x86 CPU starting in 2006. Intel
calls its version of hardware-assisted virtuali-
zation “VT” (“Virtualization Technology”,
formerly “Vanderpool”) while AMD calls it
SVM (“Secure Virtual Machine”, formerly
“Pacifica”).
The idea is to fix the x86 flaws that prevent
“strict” virtualization by just adding a hypervi-
sor mode to the CPU. Some sensitive instruc-
tions still don’t trap when in user mode, but
this is no longer a concern, when the guest ker-
nel can be run in kernel mode.
Intel calls its hypervisor mode “root mode”,
and all code not in root mode executes in “non-
root mode”, i.e. there is a non-root kernel mode
and a non-root user mode. The host operating
system runs in root mode (the host kernel in
root kernel mode, the host processes in root
guest mode), and the guest runs in non-root
mode. So the machine is basically slit into two

parts, and each part has its kernel and user
mode.
The VMM can set up a complete virtual ma-
chine and then just issue the “vmenter” instruc-
tion. The CPU will save its complete state in a
memory structure named “VMCS” (“virtual
machine control structure”) and load the state
of the guest from the VMCS. It will execute
the code inside the virtual machine, until there
is a “VM exit”. In this case, the CPU will save
its state in the VMCS and load the state of the
host from the VMCS. With VT and SVM, the
“world switch” between the host and the guest
is completely implemented in hardware.
The VMCS also contains a lot of bits, each of
which specifies whether there will be a VM
exit on a specific event. The VMM can make
the CPU return to the VMM when there is a
syscall - but it can also choose to ignore them,
then they will just execute natively.
VT and SVM can make virtualization a lot eas-
ier: There is no need for a binary translator (re-
compiler) any more, the VMM can tell the
CPU on which instructions to trap - but, as a
second advantage, there are a lot less instruc-
tions that actually need to trap: On a hypervisor
architecture, a switch between kernel mode and
user mode can safely be executed natively.
But VT and SVM don’t necessarily make vir-
tualization faster. VMware for example claims
that their binary translation solution is faster
than a VT-based solution, because the binary
translator can avoid many unnecessary traps,
for example for page table accesses, that are
still necessary on VT.
Furthermore, they state that the biggest speed
boost would come from the implementation of
nested paging in hardware, so that page table
accesses won’t need to trap, but instead, the
non-root kernel mode code can write its own
page tables, but the CPU will indirect all mem-
ory accesses through two sets of page tables:
The guest’s tables and the host’s tables. So a
guest’s virtual address will be translated into a
guest’s physical address, and this address will
then be translated into a host’s physical address
- all in hardware. Advanced versions of both
VT and SVM will implement this.

Another enhancement of future hardware-
assisted virtualization solutions will be the
inclusion of I/O virtualization: Current (server
level) virtualization solutions cannot exclu-
sively assign physical hardware (like a network
card) to one specific virtual machine by allow-
ing the VM full access to the device, because
the device is not aware of paging and only
works with physical addresses, so it could read
and overwrite all physical memory. I/O virtu-
alization directs all memory accesses of de-
vices through page tables.

References
I do not have any VMware/VirtualPC/Parallels
inside knowledge; all my knowledge is derived
from reverse engineering their kernel modules
and reading public papers.
Lo, Jack: VMware and CPU Virtualization
Technology,
http://download3.vmware.com/vmworld/2005/
pac346.pdf
Adams, Keith; Agesen, Ole: A Comparison of
Software and Hardware Techniques for x86
Virtualization,
http://www.vmware.com/pdf/asplos235_adams
.pdf
Adams, Keith: "Blue Pill" is quasi-illiterate
gibberish,
http://x86vmm.blogspot.com/2006/08/blue-pill
-is-quasi-illiterate.html
VMware, Parallels, Plex86, QEMU/QVM86,
XNU and Mac-on-Linux source code
Engel, Michael: Systemprogrammierung,
http://osg.informatik.tu-chemnitz.de/de/vorlesu
ngen/ss06/systemprogrammierung.html
Steil, Michael: How retiring segmentation in
AMD64 long mode broke VMware,
http://www.pagetable.com/?p=25
John Scott Robin; Cynthia E. Irvine: Analysis
of the Intel Pentium's Ability to Support a Se-
cure Virtual Machine Monitor,
http://www.cs.nps.navy.mil/people/faculty/irvi
ne/publications/2000/VMM-usenix00-0611.pdf

http://download3.vmware.com/vmworld/2005/pac346.pdf
http://download3.vmware.com/vmworld/2005/pac346.pdf
http://download3.vmware.com/vmworld/2005/pac346.pdf
http://download3.vmware.com/vmworld/2005/pac346.pdf
http://www.vmware.com/pdf/asplos235_adams.pdf
http://www.vmware.com/pdf/asplos235_adams.pdf
http://www.vmware.com/pdf/asplos235_adams.pdf
http://www.vmware.com/pdf/asplos235_adams.pdf
http://x86vmm.blogspot.com/2006/08/blue-pill-is-quasi-illiterate.html
http://x86vmm.blogspot.com/2006/08/blue-pill-is-quasi-illiterate.html
http://x86vmm.blogspot.com/2006/08/blue-pill-is-quasi-illiterate.html
http://x86vmm.blogspot.com/2006/08/blue-pill-is-quasi-illiterate.html
http://osg.informatik.tu-chemnitz.de/de/vorlesungen/ss06/systemprogrammierung.html
http://osg.informatik.tu-chemnitz.de/de/vorlesungen/ss06/systemprogrammierung.html
http://osg.informatik.tu-chemnitz.de/de/vorlesungen/ss06/systemprogrammierung.html
http://osg.informatik.tu-chemnitz.de/de/vorlesungen/ss06/systemprogrammierung.html
http://www.pagetable.com/?p=25
http://www.pagetable.com/?p=25
http://www.cs.nps.navy.mil/people/faculty/irvine/publications/2000/VMM-usenix00-0611.pdf
http://www.cs.nps.navy.mil/people/faculty/irvine/publications/2000/VMM-usenix00-0611.pdf
http://www.cs.nps.navy.mil/people/faculty/irvine/publications/2000/VMM-usenix00-0611.pdf
http://www.cs.nps.navy.mil/people/faculty/irvine/publications/2000/VMM-usenix00-0611.pdf

