
Abstract
Virtualization is complex. In cooperation with 
the host operating system, the Virtual Machine 
Monitor takes over complete control of the 
machine hundreds of times a second, handles 
pagetables completely manually, and may 
chose to wire (make-non-pageable) as much 
memory as it chooses. This paper explains why 
it still works.

Motivation
In 1999, VMware was the first virtualization 
solution for x86-based computers. Even 7 
years later, there are only three competitors: 
Microsoft with VirtualPC (architected by Dy-
namic Recompilation pioneer Eric Traut who 
did Apple’s 68K to PowerPC Recompiler) and 
that obscure Russian company that seems to 
have offered the same product under 3 different 
names (SVISTA, 2ON2 and now Parallels). 
Kevin Lawton, the creator of the x86-Emulator 
Bochs started an Open Source virtualization 
project called Plex86 (originally FreeMWare) - 
but it basically failed. Only recently, the Open 
Source QEMU project, which started as a re-
compiler, has been gaining execution speeds 
into the direction of VMware, by implementing 
some of VMware’s methods.
This paper first summarizes some basic operat-
ing system features, like scheduling, managing 
page tables, and providing a system call inter-
face, in order to have a common basis that can 
be talked about.
The main part is about the tricks a conventional 
virtualization solution has to apply to run the 
guest operating system as a user mode process: 
The virtual machine monitor (VMM) has to set 
up address spaces for guest code, handle nested 
page tables, switch between the host and the 
guest(s), trap I/O accesses, and help cooperate 
in memory management between the host and 

the guest(s).
The third part of the paper explains why the 
x86 architecture is not strictly virtualizable, 
what tricks VMware, VirtualPC and Parallels 
use to still make it possible, and in what way 
Intel VT (Vanderpool) and AMD SVN (Paci-
fica) help to make x86 virtualization easier or 
possibly more efficient.

Operating Systems
While “virtualization”  might sound like a very 
modern and therefore “hot”  piece of technol-
ogy, it is actually quite old: Operating systems 
virtualize the machine by providing each of its 
processes a virtual CPU, virtual memory and 
virtual hardware (in the sense of kernel func-
tions).
Multitasking
In the 1960s, computers usually did batch jobs 
that took hours, reading the input from tape, 
and writing the results back to tape. Since the 
tapes were slow, the CPU was basically wasted 
while the program was reading data from or 
writing data to tape and therefore waiting, as 
the CPU would have been independent to do 
other tasks in the meantime.
Attaching two tape drives and running two jobs 
at a time significantly optimized the load of the 
CPU: If one so-called process is blocked (be-
cause it is waiting for data from the tape drive), 
the CPU can be switched to the other process 
and perform calculations there. Also, if one 
process uses the CPU for too long, control can 
be migrated to the next process, in order to 
have a fair division of the CPU for the proc-
esses, regardless of the amount of I/O they per-
form.
Multitasking, which gives each process its own 
virtual CPU, can optimize the usage of the 
CPU if the processes do a lot of I/O.
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CPU Modes
As different processes should not be able to 
influence each other, there must be an operat-
ing system to arbitrate. The CPU needs to have 
two modes: user mode and supervisor mode 
(kernel mode). Process run in user mode and 
therefore don’t have full control of the ma-
chine. Only the operating system runs in kernel 
mode, it manages the processes and has there-
fore full control of the system. Each process 
can run as if it was the only one on the ma-
chine.
Syscalls
All instructions that change the overall state of 
the system (privileged instructions) do not 
work in user mode, they trap, i.e. they generate 
an exception, which means, the CPU will 
automatically switch into the kernel, which can 
then decide what to do. Usually user mode 
programs avoid execution of these privileged 
instructions; instead, they explicitly call the 
kernel for specific functionality, using syscalls: 
A syscall deliberately switches into kernel 
mode, calling a specific function of the kernel, 
which will then return to user mode.

Scheduling
The kernel will set up to a timer that interrupts 
execution of user mode code typically about 
100 times a second. Every time such an inter-
rupt occurs, the CPU switches into kernel 
mode, and the scheduler, which is a part of the 
kernel, decides which process to run next and 
switches back to user mode. The time between 
two scheduler runs is called a time slice.
Virtual Memory
While in order to protect processes from each 
other, it would be enough to have a base and a 
limit address of memory that it can access for 

each process, it is a lot more flexible to use 
paging: For every 4 KB “page” of memory, 
there is a mapping from virtual memory (the 
memory as the process sees it) to physical 
memory (as the address leaves the CPU for the 
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memory chips). This way, two processes can 
both have their code at (virtual) address 
0x1234, but effectively use different parts of 
system RAM.
These mappings are stored in page tables. 
There is a set of page tables for every process, 
and on a context switch (as the scheduler 
switches from one process to the next one), the 
set of page tables gets switched.

Virtualization
Although strictly speaking, operating systems 
already implement virtualization, in today’s 
context, virtualization means running multiple 
operating systems at the same time. These op-
erating systems  are separated from each other, 
cannot influence each other and don’t even 
know about each other. So an OS can no longer 
have full control of the CPU.
Hypervisor Mode
In order to disempower kernel mode (supervi-
sor mode), some CPUs therefore introduce a 
third mode, called hypervisor mode: Hypervi-
sor mode has full control of the CPU, and the 
Virtual Machine Monitor (VMM) runs in hy-
pervisor mode and arbitrates between operating 
systems. If hypervisor mode is enabled, kernel 
mode will no longer have full control of the 
CPU.
While the interface between user mode and 
kernel mode will still be the same, there is now 
a new interface between kernel mode and hy-
pervisor mode: All privileged instructions is-

sued by the kernel (in kernel mode) now trap 
into hypervisor mode, and the VMM can then 
emulate the desired behavior. This method is 
called “trap and emulate”. All page table ac-
cesses, I/O accesses and (virtual) system 
crashes will be handled this way.
An example of a CPU that implements a hy-
pervisor mode is the IBM PowerPC 970, also 
known as G5. The architecture of Intel VT 
(Vanderpool) and AMD SVM (Pacifica) is also 
close to the hypervisor mode approach.
No Hypervisor Mode
But many architectures don’t have a hypervisor 
mode, like the PowerPC G4 or the x86 line be-
fore VT/SVM. Every kind of protection in 
CPUs is always also possible with only two 
permission levels. The idea is to run the VMM 
in kernel mode, and push the guest kernel up 
into user mode. This way, only the VMM will 
run in the privileged mode of the CPU and 
have full control of the hardware.
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! lgdtl!0x00005002

! lidtl!0x00005012

! movl! 0x0000e008,%eax

! movl! %eax,%cr3

! movl! %cr4,%eax

! orl! $0x000000e0,%eax

! movl! %eax,%cr4

emulate_lgdt();
resume();

emulate_lidt();
resume();

emulate_movtocr3();
resume();

emulate_movfromcr4();
resume();

emulate_movtocr4();
resume();
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Just like in the scenario with hypervisor mode, 
all privileged instructions in the guest kernel 
will trap into the VMM. For traps in user 
mode, it is different: All traps in user mode, 
including syscalls, will make the CPU switch 
into the VMM code in kernel mode. The VMM 
will then have to manually emulate this func-
tion, switch to the guest’s kernel mode and 
move execution to the according handler.
Scheduler
The following paragraphs assume that the 
VMM is running on an existing OS, like 
VMware Workstation, Virtual PC and Parallels 
Workstation/Desktop do it, as this is the more 
interesting case. The bulk of the logic is in the 
user mode application (for example 
“vmware.exe”), but some operations  can only 
be carried out in kernel mode. These reside in 
the kernel module that is shipping with each of 
these solutions (vmmain for VMware, vmmon 
for Parallels). For example, all decisions can be 
made by the user mode part, while all changes 
to the state of the CPU, like switches between 
the host and the guest, can only be carried out 
in kernel mode. The commercial virtualization 
solutions for Linux hosts also try to run as 
much code as possible in user mode, because 
they have to open source their Linux kernel 
module and thus all their kernel mode code.
Every guest OS will behave like an application 
on the host operating system and be scheduled 
against other apps; to the host kernel, the user 
mode application (“vmware.exe”) is the repre-
sentative of the virtual machine. This user 
mode application will donate its time slices to 
the virtual machine: Every time it is assigned a 
time slice, it will switch into the guest context, 
and at the end of the slice, a switch back will 
occur. These are called world switches.
For a world switch, the VMM user mode com-
ponent calls the VMM kernel mode compo-
nent, because a world switch can only be done 
in kernel mode. The kernel mode component 
will then
• switch the register set
• switch the interrupt/exception vector set
• switch the page tables
So the complete host context is saved, and the 
guest context is loaded. The kernel mode com-

ponent will then switch into user mode and 
jump to the guest code.
A very small part of the VMM kernel mode 
component will remain mapped into the guest’s 
address space, and all interrupt/exception vec-
tors point to this code, so that it can catch all 
interrupts and exceptions.
The guest code will execute until the next in-
terrupt or exception occurs. This can be a privi-
leged instruction that the guest kernel tried to 
execute, a syscall of user mode code, or simply 
a timer interrupt indicating the end of the time 
slice. As all interrupts and exceptions will be 
caught by the VMM kernel mode component, 
it will switch the register set, the interrupt/
exception vectors and the page tables back, and 
in case it was an exception caused by the VM, 
the reason will be passed up to the VMM user 
mode component, which will then decide how 
to handle it. If, on the other hand, it was a 
hardware interrupt, the VMM kernel mode 
component will pass this information to the 
host kernel. In case of the scheduler, control 
will be taken away from the current process 
(the VMM) and handed to the next process.
Virtual Memory
Since the virtual machine must behave like a 
real machine, memory must behave the same 
for all code running inside the VM, so both 
user mode and kernel mode must see memory 
as it is supposed to be mapped.
Just passing through page table entries from 
inside the VM to the physical system is not 
possible, because all operating systems think 
they can target physical pages starting with 
page 0, so they would map their virtual pages 
to the same physical page.
Therefore every page table access in the VM’s 
kernel traps into the VMM, which will then 
create a mapping that has the same effect, but 
uses a different page - managed by the VMM. 
Also, if the guest kernel reads back the page 
table entry, there will also be a trap, and the 
VMM has to present the original (instead of the 
effective) value. The effective page tables are 
called “shadow page tables”, and the whole 
method is called “two level paging”.
When the guest wants to map a new page, the 
VMM kernel mode component will ask the 



host operating system for a page of memory, 
which the host kernel will then map into the 
VMM’s address space. The VMM can read the 
page table entry that was just created by the 
host operating system and find out what physi-
cal page it was given. This physical page can 
then be used inside a VM.
The host kernel may never take this page away, 
because it is unaware of the fact that the page 
is still used inside the VM as well - after all, 
the VMM assigned its own page table map-
pings to this page for some VM. Therefore the 
VMM must mark the page as “wired”, so that 
the host kernel will never take it away and put 
it into the paging file on disk.
Unfortunately, this would mean that paging out 
VMs isn’t possible. While rarely used memory 
pages of ordinary applications will be moved 
from RAM into the paging file in order to free 
up some memory in case memory runs low, all 
the wired pages of a VM cannot be paged out. 
This can be solved by having a special “mem-
ory pressure” interface between the host kernel 
and the VMM: If system memory is low, the 
host kernel can tell the VMM, which will then 
look at its page usage statistics inside the VM 
and unmap a page from the VM. This page can 
then be “unwired”  so that the host kernel can 
page it out. The next time the VM accesses this 
page, it will trap into the VMM, which will 
then be able to map the page back, according to 
its internal accounting structures.
But making the guest kernel trap on page table 
accesses might not be as easy: Page tables are 
normal data in memory, and while switching 
page tables, i.e. loading the pointer to the root 
page table is a privileged instruction that will 
trap when issued in user mode, accessing page 
table entries just means accessing memory, and 
it won’t trap. The trick to still make these ac-
cesses trap is to mark the pages the page table 
entries reside on as invalid on the shadow page 
tables.
I/O
As all code inside the VM runs in user mode, 
all I/O accesses will trap into kernel mode, i.e. 
the VMM. The VMM will then find out the na-
ture of the hardware access, fake the hardware 
and return to the guest. For example, if a guest 

asks the PS/2 mouse for its state, the access 
will trap to the VMM, and the VMM will 
communicate the current mouse state (in the 
PS/2 protocol encoding) to the guest, based on 
internal information about the emulated mouse.
If a virtual device is supposed to generate inter-
rupts when new data is available, the VMM has 
to inject an interrupt into the VM by emulating 
exactly what would happen in case of an inter-
rupt on a real machine: The next time the VM 
will be resumed, it will be in kernel mode, at 
the location specified by the (virtual) interrupt 
vector. This is also the way the scheduler inside 
the guest works: The guest programs the virtual 
timer and interrupt controller to generate peri-
odic interrupts, and the VMM will inject inter-
rupts into the guest from time to time.
Unfortunately, this method is quite slow for 
many devices, especially video, because the 
guest’s driver and the VMM have to communi-
cate in the language of the hardware protocol, 
which may be efficient for real hardware, but is 
not for interfaces between two pieces of soft-
ware. Therefore, virtualization solutions typi-
cally provide special drivers to be installed in-
side the VM that either use special assembly 
instructions or I/O regions which are unused by 
a real machine to directly communicate with 
the VMM, using a very efficient high-level 
protocol.

x86
As pointed out above, having a hypervisor 
mode in a CPU is useful for virtualization but 
not strictly necessary. But there is one neces-
sary requirement for a CPU to be “strictly”  vir-
tualizable: All privileged instructions must trap 
into kernel mode when used in user mode - 
they may not just behave differently. Otherwise 
the guest kernel cannot be run in user mode, as 
it could use assembly instructions that cannot 
be trapped and emulated, so the kernel would 
just behave differently when in user mode. The 
kernel would just not work.
Unfortunately, this is the case on the x86. 
There are several instructions that behave dif-
ferently in user mode than in kernel mode, in-
stead of causing a trap. For example, a user 
mode application could ask whether it is run-



ning in kernel mode or user mode, and it would 
get the answer “user mode” without any 
chance for the VMM to intercept this instruc-
tion and return the fake answer.
Therefore, the x86 CPU is not “strictly”  virtu-
alizable. But as every Turing complete ma-
chine can emulate every other Turing complete 
machine, running an operating system on top 
of another one is definitely possible. Bochs for 
example emulates an x86 PC by interpreting 
the x86 code instruction for instruction - at the 
expense of speed. Recompilers translate source 
assembly code to target assembly code, and are 
a lot faster.
The trick that is used by all x86 virtualization 
solutions is to recompile (“binary translate”) all 
potential sensitive code, i.e. translate all x86 
assembly code that is problematic, because it 
does things that should trap but do not trap into 
code that has these instructions replaced with 
explicit traps into kernel mode.
All user mode code of the guest will also be 
executed in user mode, so all this code can be 
run natively. But all kernel code of the guest 
must be checked before it can be executed. As 
in dynamic recompilers, the code is split into 
“basic blocks”  (a block of contiguous instruc-
tions up to the next control flow instruction, i.e. 
jump, branch, call, return), and these basic 
blocks are then verified. If they don’t contain 
problematic instructions, they can be executed 
verbatim, otherwise these instructions will be 
replaced by a call into the VMM.
All code that has been checked once does not 
need to be checked again, and a set of basic 
blocks that reference each other can be put to-
gether to a bigger block that can execute verba-
tim without future checks. Furthermode, the 
explicit traps can be translated into code that 
does the required function inline, without 
switching to the VMM: The instruction to find 
out the mode the CPU is in could be replaced 
by an instruction that loads the constant repre-
senting “kernel mode”.
But the disadvantage of having so much extra 
work to do (basic block accounting, translation, 
basic block linking etc.) leads to an advantage: 
Having all this infrastructure in place, the re-
compiler (on certain operating systems) can for 

example replace the instruction the guest ker-
nel uses to return to user mode after a syscall 
(sysexit, sysret or iret) with code that just 
jumps to the guest user mode code. On a hy-
pervisor mode trap-and-emulate solution, a sy-
sexit would require a context switch (from ker-
nel mode into user mode; just like on a real 
machine), and on a kernel mode trap-and-
emulate solution, it would require two world 
switches (from the guest kernel into kernel 
mode, and back into guest user mode).
Another trick documented by VMware is this: 
There is usually no code block inside an oper-
ating system with a memory access instruction 
that sometimes accesses page table entries and 
sometimes accesses other data in memory. An 
instruction that writes a page table entry will 
always write page table entries. So as soon as 
such an instruction is identified (by making it 
trap using an invalid page), it can be translated 
inline to an explicit hypervisor call, which can 
be a lot cheaper than a trap.

VT and SVM
Both Intel and AMD understood the need for 
virtualization today, and that virtualizing the 
x86 is painful. Therefore they introduced very 
similar but incompatible technologies in all of 
their main-line x86 CPU starting in 2006. Intel 
calls its version of hardware-assisted virtuali-
zation “VT”  (“Virtualization Technology”, 
formerly “Vanderpool”) while AMD calls it 
SVM (“Secure Virtual Machine”, formerly 
“Pacifica”).
The idea is to fix the x86 flaws that prevent 
“strict”  virtualization by just adding a hypervi-
sor mode to the CPU. Some sensitive instruc-
tions still don’t trap when in user mode, but 
this is no longer a concern, when the guest ker-
nel can be run in kernel mode.
Intel calls its hypervisor mode “root mode”, 
and all code not in root mode executes in “non-
root mode”, i.e. there is a non-root kernel mode 
and a non-root user mode. The host operating 
system runs in root mode (the host kernel in 
root kernel mode, the host processes in root 
guest mode), and the guest runs in non-root 
mode. So the machine is basically slit into two 



parts, and each part has its kernel and user 
mode.
The VMM can set up a complete virtual ma-
chine and then just issue the “vmenter”  instruc-
tion. The CPU will save its complete state in a 
memory structure named “VMCS” (“virtual 
machine control structure”) and load the state 
of the guest from the VMCS. It will execute 
the code inside the virtual machine, until there 
is a “VM exit”. In this case, the CPU will save 
its state in the VMCS and load the state of the 
host from the VMCS. With VT and SVM, the 
“world switch” between the host and the guest 
is completely implemented in hardware.
The VMCS also contains a lot of bits, each of 
which specifies whether there will be a VM 
exit on a specific event. The VMM can make 
the CPU return to the VMM when there is a 
syscall - but it can also choose to ignore them, 
then they will just execute natively.
VT and SVM can make virtualization a lot eas-
ier: There is no need for a binary translator (re-
compiler) any more, the VMM can tell the 
CPU on which instructions to trap - but, as a 
second advantage, there are a lot less instruc-
tions that actually need to trap: On a hypervisor 
architecture, a switch between kernel mode and 
user mode can safely be executed natively.
But VT and SVM don’t necessarily make vir-
tualization faster. VMware for example claims 
that their binary translation solution is faster 
than a VT-based solution, because the binary 
translator can avoid many unnecessary traps, 
for example for page table accesses, that are 
still necessary on VT.
Furthermore, they state that the biggest speed 
boost would come from the implementation of 
nested paging in hardware, so that page table 
accesses won’t need to trap, but instead, the 
non-root kernel mode code can write its own 
page tables, but the CPU will indirect all mem-
ory accesses through two sets of page tables: 
The guest’s tables and the host’s tables. So a 
guest’s virtual address will be translated into a 
guest’s physical address, and this address will 
then be translated into a host’s physical address 
- all in hardware. Advanced versions of both 
VT and SVM will implement this.

Another enhancement of future hardware-
assisted virtualization solutions will be the 
inclusion of I/O virtualization: Current (server 
level) virtualization solutions cannot exclu-
sively assign physical hardware (like a network 
card) to one specific virtual machine by allow-
ing the VM full access to the device, because 
the device is not aware of paging and only 
works with physical addresses, so it could read 
and overwrite all physical memory. I/O virtu-
alization directs all memory accesses of de-
vices through page tables.
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