The blackbox in your phone

Hunz
Zn000h at gmail.com

CCC Camp 2011
10.08.2011
Contents

- Smartcards in general
- The SIM
 - filesystem
 - commands
- SIM application toolkit (SAT)
- Tools
- Summary
Smartcards: physical connections

- Not just memory, but a microcontroller → card decides, what the user can do

- Connections:
 - RST: Reset input
 - CLK: Clock input
 - IO: Data in/out
 - Vcc: supply voltage (1.8V / 3V)
Smartcards: data transmissions

- Serial protocol like RS-232
- But: only one data line → half duplex
- Request/response with Terminal as Master
- Baudrate depends on input clock
 - Initial baudrate = clk / 372
A simple smartcard terminal

- Phoenix & Smart-/Dumbmouse Terminals
- RS-232 UART used for communication
 - Card clock = 9600 baud * 372 = 3.5712 MHz
 - IO: Open collector w/ pullup
- RTS used for card reset (polarity may vary)
- Or: use a PC/SC reader
Smartcards: Protocol setup

- Card reset
- Card sends Answer-to-Reset (ATR)
 - Supported parameters, protocols, etc.
 - ATR: 3B <more stuff>
 - Decode w/ `pcsc_tools`: ATR_analysis
- Protocol-Parameter-Selection (PPS)
 - protocol+baudrate selection
 - optional, but heavily used nowadays
Smartcards: T=0 Protocol

- Communication via Application Protocol Data Units (APDU)
 - **CLA**: Instruction Class
 - **INS**: Instruction (command)
 - **P1, P2**: Instruction-specific parameters
 - **Len**: Data length
 - **Data** (optional) either to or from card
 - **SW1, SW2**: Status (from card)
Smartcards: T=0 Example

1) ADPU Header (Terminal → Card)
2) ACK (Card → Terminal)
3) Data (Terminal → Card)
4) Status (Card → Terminal)

- Card sends ACK/INS (or error-status) after data length received
Smartcards: Further reading

- Smartcard handbook: http://www.wrankl.de/SCH/SCH.html
- Handbuch der Chipkarten (german): http://www.wrankl.de/HdC/HdC.html
- Phoenix reader – you can build your own
 - Several designs → use google
 - Replace MAX232 w/ FT232 or so for USB
 - Use 3.3V instead of 5V!
Purpose of the SIM

- User authentication
- Network authentication (3G)
- Data storage (phonebook, SMS, settings)
- Common platform for additional services
 → SIM Application Toolkit
SIM filesystem

- Access control
- Contains directories & files
 - identified by 16bit File-ID (FID)
 - MF (Master File) : root dir (FID: 3f00)
 - DF (Dedicated File) : directory
 - EF (Elementary File) : file
- Special EF types: record files
 - Fixed or variable length
 - Cyclic
 - Example: Phonebook
 - Example: Call History
SIM filesystem: important FIDs

- **DF_GSM**: Network related data
 - **EF_IMSI**: IMSI
 - **EF_Kc**: session key
 - Etc.

- **DF_TELECOM**: Data for user
 - **EF_SMS**: SMS storage
 - **EF_ADN**: phonebook
 - Etc.
SIM filesystem: a few notes

- SELECT instruction opens a file for access
- FIDs usually aren't unique across directories
 - Different EFs in different DFs may have same FID
 → SELECT needs to follow path of directories
 - Example: SELECT MF; SELECT DF_GSM; SELECT EF_IMSI

- There's no directory listing like "ls"
 - FIDs for GSM are published in the specs
 - Are there any hidden (non-specified) FIDs?
Tool: SIM_dump

- Phoenix only, no PC/SC yet
- Brute-force-approach on FIDs
 → find hidden files
- C-tool to dump files from SIMs - no USIMs yet
 - Quick, ugly hack. Stable?
 - But I tested it once!1
- Still want the code?
 → https://github.com/znuh/simdump
SIM instructions (1)

- 1 APDU can only transfer data to or from card
 - What if we need both?
 - GET_RESPONSE fetches the answer

<table>
<thead>
<tr>
<th>A0</th>
<th>C0</th>
<th>0</th>
<th>0</th>
<th>Len</th>
<th>Data</th>
<th>SW1</th>
<th>SW2</th>
</tr>
</thead>
</table>

- How to select a FID?
 - SELECT

<table>
<thead>
<tr>
<th>A0</th>
<th>A4</th>
<th>0</th>
<th>0</th>
<th>2</th>
<th>FID</th>
<th>SW1</th>
<th>SW2</th>
</tr>
</thead>
</table>

- Read/update/etc. File
 - Would bloat this talk too much
- **RUN GSM**
 - User authentication
 - Session key (Ciphering Key (Kc)) generation

 Answer via GET RESPONSE:

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th>Random value from net</th>
<th>SW1</th>
<th>SW2</th>
</tr>
</thead>
<tbody>
<tr>
<td>A0</td>
<td>88</td>
<td>0</td>
<td>0</td>
<td>16</td>
<td>SW1</td>
<td>SW2</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th>SRES(4) + Kc(8)</th>
<th>SW1</th>
<th>SW2</th>
</tr>
</thead>
<tbody>
<tr>
<td>A0</td>
<td>C0</td>
<td>0</td>
<td>0</td>
<td>12</td>
<td>SW1</td>
<td>SW2</td>
<td></td>
</tr>
</tbody>
</table>

- SRES: Authentication response
- Kc: Ciphering key
USIMs

- Backwards compatible
- Multiple Applications on a single card
 - EF_DIR (2F00) has a list of installed applications
 - Application ID (AID) selection
- Other CLA for USIM – 00 instead of A0
- Mutual (network & user) authentication
 - AUTHENTICATE instruction
Tool: SIMtrace

- Hardware sniffer for phone ↔ SIM
- With inject support! → MITM
- Made by the osmocom guys

- Cheap AND open
- Get it here at the camp
- There's a workshop
- See RadioVillage
Example:

APDU: (22):
```
00 00 00 09 6f 38 04 00
15 00 55 01 02 00 00
91 78
```

APDU: (16):
```
ff 3f ff ff 00 00 3f 03
00
91 78
```
The SIM Application Toolkit (SAT)

- Normal way: phone sends commands to SIM
- SAT: Commands from SIM to phone

Why?
- Additional phone-independent services

How?
- Terminal is master → polling
- New instructions, status word (91xx instead of 9000)
- SAT Commands part of GSM/3G spec
- Most stuff is done in baseband!
- App-MCU mostly for user-interaction
SAT instructions

- Terminal profile (data: phone → SIM)
 - Notify SIM about SAT-features supported by phone

- Fetch (data: SIM → phone)
 - Fetch SAT commands from SIM
SAT instructions (2)

- Terminal response (data: phone → SIM)

<table>
<thead>
<tr>
<th>A0</th>
<th>14</th>
<th>0</th>
<th>0</th>
<th>Len</th>
<th>Data</th>
<th>SW1</th>
<th>SW2</th>
</tr>
</thead>
</table>

- Answer to SAT-commands from previous Fetch

- Envelope (data: phone → SIM)

<table>
<thead>
<tr>
<th>A0</th>
<th>C2</th>
<th>0</th>
<th>0</th>
<th>Len</th>
<th>Data</th>
<th>SW1</th>
<th>SW2</th>
</tr>
</thead>
</table>

- Notify SIM about some event
- Example: menu selection, SMS received, call setup
SAT commands

- Transmitted in data-part of Fetch-instruction
- Some interesting features:
 - Set up call & call control
 - Send short message
 - Run AT command
 - Data channel stuff
 - Provide local information (cell IDs, signal levels)
 - Geographical Location Request (yes, that's GPS)
SAT command encoding

Commands + parameters are TLV encoded:

- Proactive SIM tag
 - Command details tag
 - Actual command
 - Other Parameters ...
 - ...

- Mandatory and optional parameters
- **Alpha identifier** tag controls notification of user
SAT example: send SMS

Fetch data:

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>d0 1e</td>
<td>Proactive SIM Tag</td>
</tr>
<tr>
<td></td>
<td>01 03 Command details Tag</td>
</tr>
<tr>
<td></td>
<td>01 Command number</td>
</tr>
<tr>
<td></td>
<td>13 Type of command: Send short message</td>
</tr>
<tr>
<td></td>
<td>01 Command qualifier: packing required</td>
</tr>
<tr>
<td></td>
<td>02 02 Device identities Tag</td>
</tr>
<tr>
<td></td>
<td>81 Source device identity: SIM</td>
</tr>
<tr>
<td></td>
<td>83 Destination device id: Network</td>
</tr>
<tr>
<td></td>
<td>05 00 Alpha identifier Tag</td>
</tr>
<tr>
<td></td>
<td>0b 11 SMS TPDU Tag</td>
</tr>
<tr>
<td></td>
<td>01 SMS SUBMIT</td>
</tr>
<tr>
<td></td>
<td>00 Message reference</td>
</tr>
</tbody>
</table>

...
Over-the-air update

- SMS-PP download via Envelope instruction
- Like “silent SMS”, but sent to SIM card
- Usually, there's crypto (DES/RSA?) for this
- Haven't had a closer look at this
- A virgin SIM might be a good start for this
Further reading (SIM-related)

- **ETSI TS 102 221**: SIM instructions, etc.
- **3GPP TS 31.102**: SIM files, procedures
- **3GPP TS 31.111**: SIM application toolkit
- There's a lot more

- Useful tool for SMS de/encoding: **PDUspy**
- **Session-logs** from real (U)SIMs
Summary

- SIM features:
 - phone control via SAT (calls, SMS, data, etc.)
 - location tracking
 - remote updates
- You don't know what the SIM firmware does
- With most mobile phones you cannot
 - disable the SAT
 - or see what the SAT actually does
- 3GPP SAT spec is growing (new features!)
So what can be done?

- Watch 3GPP specs for new features
- Patches for phones (Problem: → baseband?)
 - SAT filter
 - SAT monitoring
- Which SAT-features do phones support? → SIMtrace
- Which SAT-features are actually used?
 - Operator specific
 - Needs long-term monitoring
•Thanks for your attention!