
Stuff you don’t see - every
day

SDR and the GNU Radio Framework

Chaos Communication
Camp 2011

by
Marius Ciepluch

Public Speaking Protocol

Right hand: self.immediate_question(mesg);

Left hand: speaker.enhance_articulation();

Both hands: speaker.enhance_excitement();

Disclaimer

•This document was prepared as a private
“science” contribution to the Chaos
Communication Camp 2011. Anything
expressed within the documents and
during the presentation is not
associated with the author’s present or
future clients or employees.

Agenda

Agenda & Focus

Who?
Marius Ciepluch (wishi)

Software Developer
Embedded Software Development
Wireless Sensor Networks
Industrial Automation

(Software Testing ||
Software Verification)
(Reverse Engineering >>
Security Research)

twitter: @wishinet, mc - at - sandokai.eu
web: http://crazylazy.info/blog

http://crazylazy.info/blog

Motivation
How many wireless devices are here?

How many different wireless standards are
here?

omni-presence, visible math,
open approaches,

useful skills, practical approaches

Software Defined Radio

Flexible radio Flexible radio
peripheralperipheral

FPGAFPGA ADCADC

DACDAC
signal-signal-
processprocess

oror

PCPC

Origins of Software Defined Radio

•Expected to be the dominant technology in radio
communications (Wireless Innovation Forum)

•Efforts since 1984, miliary/classified research

•Getting more affordable lately for amateurs

•Some models use sound-cards as ADCs. Other
approaches are with ADCs and FPGAs

UseCases for SDR (with GNU Radio)

• 802.15.4, Bluetooth, DECT, GPS, GSM, Tetra, 802.11b, RFID, custom
protocols/requirements (e.g. real-time) - commercial wireless

• Spectrum Sensing and Interference Studies - reliable communication
design

• Active/Passive Radar, Sonar, SIGINT/COMINT, Field Smart Radios,
Satellite Ground Stations - Security Research and Public Safety

• Multi-Mbps GMSK, PSK, OFDM, MIMO networking - development

• Radio Astronomy, Telemetry, Medical Imaging, Wild Life Tracking,
Structural Analysis - science and engineering

What is GNU Radio

•Software framework (GPL)

•Develop transmission schemes

•Many algorithms included

•Interesting architecture (C++ ↔ Python ↔ XML)

•Abstracts HW interaction with peripheral

Wireless Germany – Stuff you don't see every day

802.11802.11

2,4G

BluetoothBluetooth

802.15.4802.15.4

2,5GFrequency →

RFIDRFID
13,56 MHz13,56 MHz

Baby-PhoneBaby-Phone
27 MHz27 MHz

Stereo-HeadPhone,Stereo-HeadPhone,
Alarm-System,Alarm-System,

car-key, power-cordcar-key, power-cord
433 MHz433 MHz

ISM
PANPAN

WiMAXWiMAX
3-6 GHz3-6 GHz

GSMGSM
1,8 GHz1,8 GHz

TetraTetra
380-395 MHz380-395 MHz

TetrapolTetrapol
520-700 MHz520-700 MHz

UMTSUMTS
1,9-1,92 GHz1,9-1,92 GHz

• sample-rate: samples/second - a real-time system

• gain: constant for PGA

• modulation: -> extra section

• wave: the “moving” curve

• pulse: positive short amplitude

• carrier: “mother wave”

• IF band: inner frequency band, RF band: received at
Daughter Board (down-scales to ADC frequency)

• ADC/DAC: Analog Digital Converter / Digital Analog
Converter

Demo: psk audio, 33KHz, 8bps

Hardware: USRPsHardware: USRPs

ADCs at the radio peripheral

direct baseband RF signal acquisition

antenna
(microvolt-range)

RF amplifier
(boost to ADC input voltage, band-pass filter)

analog RF frequency translation

HF > 50 MHz USRP2 - aliasing

analog mixer, local oscillator
(“daughter-board”)

IF - Intermediate Frequency

At the receiver system: filtering

Low Pass Filter: wideband sampling Band Pass Filter: baseband sampling

improve signal-to-noise ratio,
save dynamic ADC range

FPGAs at the radio peripheral

FPGA + ADCs = ♥

real-time DSP (vendor DSP initiatives) - dedicated HW multipliers

I/O pins: gigabit serial transceivers (BGA and flip-chip packages)

keep power and heat down (low voltage compared to CPU/GPU)

FPGA conclusions

FPGA

ADC

DAC

Parell processing
- fast signal paths
Many HW multiplicators

PC

„To do more in software...“
→ PC hardware requirements
→ „real-time“

Buffer for vectors

visualisation

Buffer for vectorsBuffer for vectorsBuffer for vectorsBuffer for vectors

DSP

code <-> usrp(2)
rx/tx

eth ADC

can be test-can be test-
drivendriven

many many
OpenSource OpenSource
start-pointsstart-points

code <-> usrp(2)
rx/tx

eth ADC

handles up to 25 handles up to 25
MS/s MS/s IQ samplingIQ sampling - -

50 Million 32 bit 50 Million 32 bit
values / secvalues / sec

can be test-can be test-
drivendriven

DDCDDC

many many
OpenSource OpenSource
start-pointsstart-points

inter-inter-
polationpolation

code <-> usrp(2)
rx/tx

eth ADC

handles up to 25 handles up to 25
MS/s MS/s IQ samplingIQ sampling - -

50 Million 32 bit 50 Million 32 bit
values / secvalues / sec

can be test-can be test-
drivendriven

DDCDDC down-scales to IFdown-scales to IF
up-scales to RFup-scales to RF

modularmodular

many many
OpenSource OpenSource
start-pointsstart-points

open open
designdesign

inter-inter-
polationpolation

RX and TX Paths on USRPs

““code near to the antenna”code near to the antenna”

discrete discrete
valuesvalues

discretediscrete
valuesvalues

you work with

publicly available GR
stacks

•communication technology research

•custom protocol analysis

•not every stack is full rx/tx

•algorithms not in GRC

•so why is this possible?

•one way to rule them all?

Quadrature Signals

See last slide for image references

Quadrature signals

• Practically in every communication system

• angle=2Pi * freq. * time

Pacman perimeter:
2 Pi * r,

r=1

e^(in-phase * 2 Pi)*freq. * time

in-phase

quadrature

e^(-in-phase * 2 Pi)*freq. * time

angle

Quadrature signals

• This Pacman is very hungy (eats itself): red dot rotates with the frequency

• It symbolizes how the unity circle can be used to understand Quadrature
signals

Pacman perimeter:
2 Pi * r,

r=1

e^(in-phase * 2 Pi)*freq. * time

in-phase

quadrature

e^(-in-phase * 2 Pi)*freq. * time

angle

Quadrature Signals (wait)

See last slide for image references

GR “Dive in”: QPSK

for (int i = 0; i < noutput_items / SAMPLES_PER_SYMBOL; i++){
 float iphase = real(in[i]);
 float qphase = imag(in[i]);

 *out++ = gr_complex(0.0, 0.0);
 *out++ = gr_complex(iphase * 0.70710678, qphase * 0.70710678);
 *out++ = gr_complex(iphase, qphase);
 *out++ = gr_complex(iphase * 0.70710678, qphase * 0.70710678);
 }

r=1

i

q

Quadrature

Sinus as carrier

Iteration within infinite vector stream
from radio peripheral – ring buffer

Used in IEEE 802.15.4 (incl. Q Delay)

01 11

11
11

Modulates phase changes in 4 phases (red dots)
2 bits per symbol,

Phase angle changes by multiplication

Interim summary

•Thinking + Images → DSP insights

•Quadrature Signals

•Radio Peripheral → device insights, HW requirements

•Sample Rate, Down Conversion, ADC/FPGA

•Checked out C++ → why Quadrature Signals

•an Implementation of QPSK

FFT (demo)
visualize Badge radio
2.4 GHz – 2.4835 Ghz
one channel 1 Mhz

2.481 GHz

FFT – spectrum scope

Left: FFT search for badge at the campside: no chance
Right: signals in 25 MHz spectrum in Waterfall-FFT

“GR Dive In” - there’s no
documentation?

• GR lacks documentation and introductorily efforts

• just Doxygen – due to active development

• few direct literature, few presentations

• the GUI (GNU Radio companion) just covers parts

• some academic research, rarely in Software
Engineering ;)

Software: GNU Radio

Python: parameter
control parameter,
connections: sink -> ... -> source

 source -> ... -> sink

parameterparameter effecteffect
center-

frequency
<- value ->

decimation 100 MS/s / value =
sample-rate

gain hw, pga

channel bandwidth dependschannel bandwidth depends

Python: parameter
control parameter,
connections: sink -> ... -> source

 source -> ... -> sink

parameterparameter effecteffect
center-

frequency
<- value ->

decimation 100 MS/s / value =
sample-rate

gain hw, pga

Nyquist TheoremNyquist Theorem

Python: parameter
control parameter,
connections: sink -> ... -> source

 source -> ... -> sink

parameterparameter effecteffect
center-

frequency
<- value ->

decimation 100 MS/s / value =
sample-rate

gain hw, pga too much?too much?

Python: “Top-Block” concept:
connections

GNU Radio Companion: Flow-graph, Python codegen GNU Radio Companion: Flow-graph, Python codegen
from XMLfrom XML

Top-Block hierarchy Top-Block hierarchy

layers layers
encapsulate encapsulate
“packages”“packages”

- reuse- reuse

global global
variables variables

define define
parametersparameters

(graphical) sink(graphical) sink

Top-Block: Capture signals

USRP2 Source – 25 MS/s
Head – just capture 25 MS
File Sink – save as cfile (IEEE single-precision 4 Byte Floats)

XML definition

Python: GRC definitions

Sink & Source

<?xml version="1.0"?>
<block>
 <name>QPSK Mod</name>
 <key>ucla_qpsk_modulator_cc</key>
 <category>802_15_4</category>
 <import>from gnuradio import ucla</import>
 <make>ucla.qpsk_modulator_cc()</make>

 <sink>
 <name>in</name>
 <type>complex</type>
 </sink>
 <source>
 <name>out</name>
 <type>complex</type>
 </source>
 <doc>
Generate a QPSK signal from a +/- 1 float stream.
For each two input symbols we output 4 complex symbols with a half-
sine
pulse shape.
 </doc>
</block>

Imports (Python)

Use QPSK Modulation

Q-Phase gets delayed
by half a symbol.

QPSK → oQPSK

Q-Phase Delay Block
int
ucla_delay_cc::work (int noutput_items,
 gr_vector_const_void_star &input_items,
 gr_vector_void_star &output_items)
{
 gr_complex *in = (gr_complex *) input_items[0];
 gr_complex *out = (gr_complex *) output_items[0];

 for (int j = 0; j < noutput_items; j++)
 out[j] = gr_complex (real(in[j+d_delay]), imag(in[j]));

 return noutput_items;
}

+ d_delay → in-phase forward

Pointer in ring-buffer

Python: GRC codegen

Interim summary

•GRC generates Python source (easy to change)

•Paramaters - to control Top Blocks via scripts

•OFDM – spread interference over range (QPSK) – 4MHz

•Verify real-time capabilities on IEEE 802.15.4
protocols e.g. - protocol specific (time on air)

•Hierarchical blocks will be integrated after restart

FFT Waterfall: channel hopping - time

waterfall uses
usrp.source_32fc()
IQ - each 32bit

limit on instantaneous
bandwidth
decimation minimally 4 –
USRP2. 25 MHz

Future of GNU Radio

•hopefully more GUI, GRC blocks and shared Flow-Graphs

•better performance at GUI sinks (I/O exhaustion at X11 sucks
- software may lose samples)

•real user documentation

•more compatible peripheral radios - not „just“ USRPs

•wider industry adaption and code contribution

Summary: stuff we see...
✔ Software Defined Radio with FOSS + modular HW

✔ GNU Radio Architecture

✔ Digital Signal Processing – one inch deep

✔ Implementations: C++, Python, XML

✔ Radio peripheral design: FPGA, ADC...

Sources

•http://dspguru.com/sites/dspguru/files/QuadSignals.pdf
 - slide, 25 – © pictures of Quadrature Signals

•http://wiesel.ece.utah.edu/redmine/projects/gr-ieee802-15-4/wiki
 - some source, GPL

http://dspguru.com/sites/dspguru/files/QuadSignals.pdf
http://wiesel.ece.utah.edu/redmine/projects/gr-ieee802-15-4/wiki

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48

