

INTRODUCTION TO SATELLITE COMMUNICATION

IRMTRAUT MEISTER CHAOS COMMUNICATION CAMP 2011

SATELLITE HISTORY I

- 1945+ "IMAGINATION"
- INVENTION OF THE TRANSISTOR, SOLAR CELLS AND THE TRAVELLING-WAVE-TUBE AMPLIFIER
- OCT 4[™] 1957 SPUTNIK 1
- FEB 1st 1958 EXPLORER 1 "EARLY BIRD",
- 1960 COURIER 1B: 1st SOLAR-CELL POWERED SATELLITE
- 1964 SAN MARCO 1, ITALY ...

SATELLITE HISTORY II

SATELLITE SUBSYSTEMS I

• STRUCTURE

- PLATFORM (BUS) CARRYING PAYLOAD
- SPIN VS. THREE AXIS STABILIZATION
- PROPULSION SYSTEM
 - LOW POWER THRUSTERS (ORBIT CONTROL)
 - MEDIUM AND HIGH POWER THRUSTERS
 - CHEMICAL & ELECTRIC PROPULSION
- AOC ATTITUDE AND ORBIT CONTROL
 - STEERING, STABILIZATION, ATTITUDE SENSORS, ACTUATORS

SATELLITE SUBSYSTEMS II

• POWER SUPPLY

- DIRECTLY RELATED TO RF POWER OF THE PAYLOAD AMPLIFIERS
- PRIMARY SOURCE: SOLAR GENERATOR
- SECONDARY SOURCE: ACCUMULATORS
- TT&C TELEMETRY, TRACKING AND COMMAND
 - ALLOCATED FREQUENCY BANDS
 - VITAL
- THERMAL CONTROL

COMMUNICATIONS

PAYLOAD

SATELLITE ORBITS I

SATELLITE ORBITS II

- CIRCULAR & ELLIPTICAL
- INCLINATION
- GEOSYNCHRONOUS OR NOT
- GEOSTATIONARY
- PROGRADE & RETROGRADE
 - MOST SATELLITES MOVE EASTWARDS

ANGULAR SPEED OF EARTH
$$\omega_E = \frac{2\pi}{T_{SID}} = 4.178 \cdot 10^{-3} \circ / s$$

 \rightarrow velocity at equator $v_0 = \omega_E \cdot r_E = 1674 \, km/h$

$$= 4.178 \cdot 10^{-3} \circ / s$$

LOW EARTH ORBIT

- н ~ 500 2000 км т ~ 2н
- MOBILE PERSONAL COMMUNICATIONS SERVICES
 - IRIDIUM, GLOBALSTAR, ORBCOMM
- ADVANTAGES
 - IMPROVED POWER BUDGET
 - MANY POSSIBILITIES FOR ORBITS
 - POLAR REGIONS ACCESSIBLE
- DISADVANTAGES

Low Earth Orbit

Polar Orbit

Ν

- TRACKING REQUIRED
- SPACE DEBRIS

MEDIUM EARTH ORBIT

- BETWEEN LEO AND GEO T ~ 6 H
- NAVIGATION SATELLITES H ~ 20000 KM
 - GPS, GLONASS, GALILEO
- ADVANTAGES
 - LARGER COVERAGE AREA
 - LESS ATMOSPHERIC DRAG THAN LEO
- DISADVANTAGES
 - HIGHER LATENCY BUT: TOA USED FOR NAVIGATION

GPS Medium Earth Orbits

- CENTRIFUGAL FORCE: $F_C = m_s \frac{v_o^2}{r}$
- $F_G = F_C$

$$T_{orb} = 2\pi \sqrt{\frac{r^3}{G m_E}} \qquad h_E = r - R_E = \sqrt[3]{\frac{G m_e T_{orb}^2}{4\pi^2}} - R_E$$
$$v_o = \frac{2\pi r}{T_{orb}} = \sqrt{\frac{G m_E}{r}}$$

GEOSTATIONARY ORBIT I

- $\omega_s = \omega_E$
- SATELLITE ORBIT E EQUATORIAL PLANE

FIXED SUBSATELLITE POINT

• SIDEREAL DAY: $T_{sid} = \frac{365.25}{365.25+1} \cdot 24h = 23h56min4s$ \rightarrow HEIGHT OF GEO SATELLITE: $(h_E)_{geo} = \sqrt[3]{\frac{Gm_E T_{sid}^2}{4\pi^2}} - R_E = 35786 \, km$

GEOSTATIONARY ORBIT II

• ADVANTAGES

- FIXED SUBSATELLITE POINT
- NO TRACKING REQUIRED (IN THEORY)
- FEW SATELLITES REQUIRED FOR GLOBAL COVERAGE

Geostationary

Orbit

- HIGHER LIFETIME
- DISADVANTAGES
 - CROWDED
 - POLAR REGIONS NOT ACCESSIBLE
 - ECLIPSES

HIGHLY ELLIPTICAL ORBITS I

• MOLNYA ORBIT

- $T = T_{SID}/2$ I = 63.4 °
 - р ~ 1 200 км а ~ 40 000 км
- COMMUNICATION AND BROADCAST SERVICES FOR AREAS WITH HIGH LATITUDE
- TUNDRA ORBIT
 - т = тыр I = 63.4 ° р ~ 25000 км а ~ 46000 км
 - BROADCAST SERVICES FOR CONFINED AREAS

Molnya

HIGHLY ELLIPTICAL ORBITS II

- ADVANTAGES
 - APOGEE DWELL →
 SERVICES FOR DEFINED REGIONS

- DISADVANTAGES
 - VARYING DOPPLER SHIFTS
 - MOLNYA: CROSSING VAN-ALLEN BELTS 4X A DAY

ORBITAL PERTURBATIONS

- ASYMMETRIC SHAPE OF THE EARTH
 - FLATTENING OF POLES $\rightarrow \frac{d\Omega}{dt}$, $\frac{d\omega}{dt}$
 - DIFFERENT EQUATORIAL RADIUS
 → EAST/WEST STATION KEEPING
- ATMOSPHERIC DRAG
 - → DECREASE OF SEMI-MAJOR AXIS
- ATTRACTION OF SUN AND MOON
 "8"-SHAPED PATH OF GEO-SATELLITE
 → NORTH/SOUTH STATION KEEPING
- SOLAR RADIATION PRESSURE
 → ORBIT BECOMES MORE ELLIPTICAL

MAGNETOSPHERE

- PROTECTS EARTH FROM
 SOLAR WIND AND
 COSMIC RADIATION
- VAN ALLEN BELTS
 - OUTER: 13000 65000 км INNER: 700 - 10000 км
 - INTEGRATED CIRCUITS AND SENSORS CAN BE DAMAGED
 - SOLAR CELL PERFORMANCE DEGRADES
 - MINIATURIZATION MAKES ELECTRONICS MORE VULNERABLE TO RADIATION

DECIBEL

VALUE IN DB DESCRIBES A RATIO

$$P_{[dB]} = 10 \cdot \log_{10} \frac{P_{out}}{P_{in}} \qquad \frac{P_{out}}{P_{in}} = 10^{\frac{P_{[dB]}}{10}}$$

• ABSOLUTE VALUES → REFERENCE

$$P_{[dBm]} = 10 \cdot \log_{10} \frac{P}{1 \text{mW}} \qquad P_{[dBw]} = 10 \cdot \log_{10} \frac{P}{1 \text{W}}$$

Ρ	10^n	100	10	5	2	1
P[dB]	n x 10	20	10	~ 7	~ 3	0
Ρ	1	1/2	1/5	1/10	1/100	10^-n
P[dB]	0	~ - 3	~ - 7	- 10	- 20	- n x 10

ALL AND ALL STON

 $log(a \cdot b) = log(a) + log(b)$ log(a/b) = log(a) - log(b)

SATELLITE COMMUNICATIONS LINK

- NETWORK ARCHITECTURES
- STATION-TO-STATION LINK
- LINK-BUDGET ANALYSIS

Signal - Cod. Mod.

Transmitting

Station

Transponder DL

UL

Receiving Station

TRANSPONDERS

transparent Transponder

LINK BUDGET

• RECEIVED POWER
$$P_R = P_T G_T \frac{G_R}{L_{FS}}$$

IN DB:
$$P_{R,dB} = P_{T,dB} + G_{R,dB} + G_{T,dB} - L_{FS,dB}$$

FREE SPACE LOSS $L_{FS} = \left|\frac{4\pi R}{\lambda}\right|^2 = \left|\frac{4\pi Rf}{c}\right|^2$

ANTENNAS I

- ISOTROPIC RADIATOR
 - HYPOTHETICAL ANTENNA UNIFORMLY DISTRIBUTES ENERGY IN ALL DIRECTIONS
 - SURFACE POWER DENSITY $S_K = \frac{P_T}{4\pi r^2}$

- EIRP: EQUIVALENT ISOTROPIC RADIATED POWER $EIRP = P_T G_T$
 - GAIN DESCRIBES DIRECTIVITY IN COMPARISON TO AN ISOTROPIC RADIATOR
 - EXAMPLE: $P_{T,A} = 2 x P_{T,IR} \rightarrow G_A = 3 dBi$

ANTENNAS III

• HORN ANTENNAS

- AS FEEDS FOR REFLECTOR TYPE ANTENNAS ON E/S
- WIDE BEAM COVERAGE FOR SATELLITES

- REFLECTOR ANTENNAS
 - REFLECTIVE
 SURFACE
 ILLUMINATED
 BY FEED HORN

MANAR IN

50

SEPARATE ANTENNAS → SPOT BEAMS

- MULTIPLE FEEDS
- ARRAY ANTENNA
 - → PHASED ARRAY ANTENNAS

→ MULTIPLE BEAMS & BEAMSHAPING

CHANNEL CHARACTERISTICS I

- AWGN ADDITION OF WHITE GAUSSIAN NOISE
- ATTENUATION DUE TO OXYGEN AND WATER VAPOUR

CHANNEL CHARACTERISTICS II

NOISE II

- THERMAL NOISE POWER $P = k_B B T$
- ANTENNA NOISE TEMPERATURE

$$T_{A} = \frac{1}{4\pi} \int_{0}^{2\pi} \int_{0}^{2\pi} \int_{0}^{2\pi} T_{b}(\theta,\phi) G(\theta,\phi) \sin\theta d\theta d\phi$$

- SATELLITE RECEIVING ANTENNA
 - AMOUNT OF NOISE CAPTURED IS SUM OF NOISE FROM EARTH AND OUTER SPACE
 - TA DEPENDS ON FREQUENCY, ORBITAL POSITION & COVERAGE AREA
 - • SYSTEM NOISE TEMPERATURE $T_{sys,sat} \approx T_0 + T_{LNA}$

NOISE III

- E/S RECEIVING ANTENNA
 - BRIGHTNESS TEMPERATURE OF THE SKY

- NOISE CONTRIBUTIONS FROM SUN & MOON
- COSMIC NOISE

NOISE IV

- E/S RECEIVING ANTENNA
 - CLEAR SKY CONDITIONS:

$$T_{A, clear} = T_{sky} + T_{ground}$$

• RAIN:
$$T_{A,rain} = \frac{T_{sky}}{A_{rain}} + T_{ground} + T_{rain} \left| 1 - \frac{1}{A_{rain}} \right|$$

$$T_{A, clear} < T_{A, rain}$$

• → SYSTEM NOISE TEMPERATURE

$$T_{sys,E/S} \approx \frac{T_A}{L_{F,r}} + T_0 \left(1 - \frac{1}{L_{F,r}} \right) + T_{LNA}$$

DOPPLER EFFECTS

- SATELLITE MOVES RELATIVE TO FIXED
 POSITION ON EARTH
 → DOPPLER EFFECTS
- DOPPLER FREQUENCY $\Delta f_d = f_c \frac{V_r}{C}$

WITH THE RELATIVE RADIAL VELOCITY

$$v_r = \frac{dR}{dt}$$

FREQUENCY BANDS I

SO - WHY HIGH FREQUENCIES?

FREQUENCY BANDS II

• SATELLITE COMMUNICATION BANDS

BAND NAME	SYMBOL (FREQUENCY)	UL	DL
UHF	l band (1-2 ghz)	1,6 GHZ	1,5 GHZ
SHF	C BAND (4-8 GHZ)	5,925-6,425 днz	3,7-4,2 GHZ
	x band (8-12 ghz)	7,9-8,4 GHZ	7,25-7,75 GHZ
	ku band (12-18 ghz)	14-14,5 GHZ 11,45-11,7 GHZ 11,7-12,2 GHZ	10,95-11,2

- FREQUENCY ALLOCATIONS DEPEND ON
 - REGION
 - SERVICE (FSS, MSS, MMSS, ISS...)

MODULATION I

- CARRIER + INFORMATION → SIGNAL
- ANALOG VS. DIGITAL
- BASIC CONCEPTS OF MODULATION
 - ASK AMPLITUDE-SHIFT KEYING
 - FSK FREQUENCY-SHIFT KEYING
 - PSK PHASE-SHIFT KEYING

MULTIPLE ACCESS I

FDMA -

FREQUENCY-DIVISION MULTIPLE ACCESS

 TRANSPONDER BANDWIDTH MUST BE PREASSIGNED BY FREQUENCY DIVISION 196

- + SIMPLE, WELL PROVEN
- - INTERMODULATION PRODUCTS

MULTIPLE ACCESS II

• TDMA - TIME-DIVISION MULTIPLE ACCESS

- BURST TIME PLAN: TRANSMISSION WITHIN DIFFERENT TIME SLOTS
- + HIGH THROUGHPUT FOR MANY SUBSCRIBER STATIONS
- SYNCHRONIZATION REQUIRED INTERSYMBOL INTERFERENCE

MULTIPLE ACCESS III

• DIRECT SEQUENCE SPREAD SPECTRUM

• UNCORELLATED SIGNALS AND INTERFERENCES LARGELY REJECTED ACCORDING TO PROCESSING GAIN

$$G_{processing} = \frac{bw_{spread}}{bw_{data}}$$

• SMALL EFFECT ON OTHER TRANSMISSIONS IN SHARED

FREQUENCY BANDS

MULTIPLE ACCESS IV

• CDMA -

CODE-DIVISION MULTIPLE ACCESS

• MULTIPLE-ACCESS TECHNIQUE BASED ON SPREAD SPECTRUM

- ALL SIGNALS TRANSMITTED WITHIN COMMON BANDWIDTH
- + NO SYNCHRONIZATION
 NO INTERFERENCES
 SMALL INTERFERENCES PRODUCED
- SMALL DATA THROUGHPUT COMPLEX

RANDOM ACCESS PROTOCOL - ALOHA

NO ACK?

- LOW-DATA RATE, BURSTY TRANSMISSIONS
- SET UP CONNECTIONS
 - PURE ALOHA
 - SELECTIVE REJECT ALOHA
 - SLOTTED ALOHA

SATELLITE NAVIGATION I

TOA - TIME OF ARRIVAL

- MEASURING SIGNAL PROPAGATION TIME Δt → CALCULATING DISTANCE TO EMITTER $r = c \cdot \Delta t$
- OFFSET OF RECEIVER CLOCK Δt_r \rightarrow <u>FOUR</u> EMITTER SIGNALS NEEDED $r_i = c(\Delta t_i - \Delta t_r)$

$$\begin{aligned} r_{1} &= \sqrt{(x_{s1} - x_{r})^{2} + (y_{s1} - y_{r})^{2} + (z_{s1} \cdot zr)^{2}} + c \Delta t_{r} \\ r_{2} &= \sqrt{(x_{s2} - x_{r})^{2} + (y_{s2} - y_{r})^{2} + (z_{s2} \cdot zr)^{2}} + c \Delta t_{r} \\ r_{3} &= \sqrt{(x_{s3} - x_{r})^{2} + (y_{s3} - y_{r})^{2} + (z_{s3} \cdot zr)^{2}} + c \Delta t_{r} \\ r_{4} &= \sqrt{(x_{s4} - x_{r})^{2} + (y_{s4} - y_{r})^{2} + (z_{s4} \cdot zr)^{2}} + c \Delta t_{r} \end{aligned}$$

SATELLITE NAVIGATION II

• ERROR SOURCES

ε

error

positioning

50

40

30

20

10

99

- SATELLITE CLOCK ERRORS
- IONOSPHERIC ERROR $\rightarrow 2^{\text{ND}}$ FREQUENCY GPS: L1 = 1575.42 MHz L2 = 1227.60 MHz

GPS

- TROPOSPHERIC ERROR
- EPHEMERIS PREDICTION ERRORS
- MULTIPATH & SHADOWING

00 01 02 03 04 05 06 07 08

• RECEIVER NOISE & RESOLUTION

SATELLITE NAVIGATION III

- DOP DILUTION OF PRECISION
 - POSITIONING ERROR ALSO DEPENDS ON THE POSITION OF THE SATELLITES

SATELLITE NAVIGATION IV

• GPS: NAVIGATION MESSAGE EXAMPLE

Ephemeris Data Set Used in Pseudo-Range Navigation Example (GPS Time = 150000 seconds)

Ephemeris Data Parameter	Value	Value	Value	Value
SV	15	27	31	7
Issue of Data Ephemeris	196	200	125	125
Cosine Correction to Inclination	-9.313225746E-08	1.136213541E-07	2.793967724E-08	-1.285225153E-07
Sine Correction to Inclination	-3.725290298E-09	-1.061707735E-07	9.126961231E-08	-1.322478056E-07
Cosine Correction to Radius	146.09375	148.84375	306.28125	322
Sine Correction to Radius	-69.9375	79.09375	-130.71875	-128.5
Cosine Correction to Latitude	-3.630295396E-06	4.122033715E-06	-6.921589375E-06	-6.720423698E-06
Sine Correction to Latitude	1.228414476E-05	1.15185976E-05	3.74391675E-06	2.983957529E-06
Mean Motion Difference	4.023024718E-09	4.513045129E-09	4.656622538E-09	4.650550857E-09
Eccentricity	0.006778693292	0.01127019501	0.005836840719	0.006999379606
Rate of Inclination Angle	1.817932867E-10	-5.928818388E-11	-5.418082828E-10	-4.207318109E-10
Orbital Inclination	0.9721164968	0.9459886628	0.9633626261	0.963950905
Mean Anomaly at Reference Time	-0.8856059028	0.1225249	-0.6775731485	3.019737078
Argument of Perigee	1.738558535	2.601538834	0.6715504011	-2.568758665
Rate of Right Ascension	-7.783538501E-09	-8.143553497E-09	-8.411421798E-09	-8.25355808E-09
Longitude of Ascending Node	-2.8654714	0.2200327977	2.320031302	2.317137898
Square Root of Semi-Major Axis	5153.618444	5153.653282	5153.789852	5153.644896
Reference Time Ephemeris	151200	151200	136800	151200

source: www.colorado.edu/geography/gcraft/notes/gps/gps_f.html

SATELLITE NAVIGATION V

- ONE LAST THING -RELATIVISTIC EFFECTS
 - SPECIAL RELATIVITY: OBSERVER ON THE GROUND SHOULD OBSERVE ON-BOARD CLOCK TICK MORE SLOWLY $\Delta t \approx 7 \,\mu s/day$

 GENERAL RELATIVITY: EARTH'S MASS BENDS SPACETIME → CLOCKS FURTHER AWAY FROM EARTH TICK <u>FASTER</u>

 $\Delta t \approx 45 \,\mu s/day$

• \rightarrow ERROR OF $\Delta t \approx 45-7 = 38 \, \mu s/day$

AWSUM THX!

i.meister@ieee.org

FURTHER READING:

- EVANS: SATELLITE COMMUNICATIONS SYSTEMS
- MESSERSCHMID, FASOULAS: RAUMFAHRTSYSTEME
- SALZBURGER: SIGNALVERARBEITUNG UND MESSDATENERFASSUNG
- CORAZZA: DIGITAL SATELLITE COMMUNICATIONS
- WWW.COMPLEXTOREAL.COM/TUTORIAL.HTM

