
How Do We Know
Our PRNGs Are Working Properly?
Felix Dörre and Vladimir Klebanov

Work supported by Karlsruhe Institute of Technology and the
DFG priority program “Reliably Secure Software Systems”

33C3

– BIND9
– OpenSSH (server, user keys)
– OpenVPN, Openswan,

StrongSWAN, tinc
– DNSSEC
– X.509
– Kerberos (Heimdal)
– encfs
– Tor
– postfix, exim4, sendmail

– cyrus imapd, uw-imapd, courier

– apache2 (ssl certs)

– cfengine, puppet

– xrdp

– gitosis

– pwsafe

– vsftpd, proftpd, ftpd-ssl

– telnetd-ssl

– DomainKeys, DKIM

https://wiki.debian.org/SSLkeys

How Do We Know Our PRNGs Are Working Properly? 33C3

https://wiki.debian.org/SSLkeys

Services Affected by the Debian OpenSSL Disaster (2006–2008)

– BIND9
– OpenSSH (server, user keys)
– OpenVPN, Openswan,

StrongSWAN, tinc
– DNSSEC
– X.509
– Kerberos (Heimdal)
– encfs
– Tor
– postfix, exim4, sendmail

– cyrus imapd, uw-imapd, courier

– apache2 (ssl certs)

– cfengine, puppet

– xrdp

– gitosis

– pwsafe

– vsftpd, proftpd, ftpd-ssl

– telnetd-ssl

– DomainKeys, DKIM

https://wiki.debian.org/SSLkeys

How Do We Know Our PRNGs Are Working Properly? 33C3

https://wiki.debian.org/SSLkeys

The “Technical” Consequence

/* DO NOT REMOVE THE FOLLOWING CALL TO MD_Update()! */

if (!MD_Update(m, buf, j))

goto err;

/*

* We know that line may cause programs such as purify and valgrind

* to complain about use of uninitialized data. The problem is not,

* it’s with the caller. Removing that line will make sure you get

* really bad randomness and thereby other problems such as very

* insecure keys.

*/

How Do We Know Our PRNGs Are Working Properly? 33C3

A Tour of Implementations

// HASHBYTES_TO_USE defines # of bytes returned by "computeHash(byte[])"

// to use to form byte array returning by the "nextBytes(byte[])" method

// Note, that this implementation uses more bytes than it is defined

// in the above specification.

How Do We Know Our PRNGs Are Working Properly? 33C3

A Tour of Implementations

// HASHBYTES_TO_USE defines # of bytes returned by "computeHash(byte[])"

// to use to form byte array returning by the "nextBytes(byte[])" method

// Note, that this implementation uses more bytes than it is defined

// in the above specification.

How Do We Know Our PRNGs Are Working Properly? 33C3

A Tour of Implementations

/* Put the data into the entropy, add some data from the unknown state, reseed */

/* Take some ”random” data and make more ”random-looking” data from it */

/* Stupid C trick */

/* This fails silently and must be fixed. */

Be very careful when using this function to ensure that you do not produce a
poor output state. (end-user documentation)

How Do We Know Our PRNGs Are Working Properly? 33C3

A Tour of Implementations

/* Put the data into the entropy, add some data from the unknown state, reseed */

/* Take some ”random” data and make more ”random-looking” data from it */

/* Stupid C trick */

/* This fails silently and must be fixed. */

Be very careful when using this function to ensure that you do not produce a
poor output state. (end-user documentation)

How Do We Know Our PRNGs Are Working Properly? 33C3

A Tour of Implementations

/* Put the data into the entropy, add some data from the unknown state, reseed */

/* Take some ”random” data and make more ”random-looking” data from it */

/* Stupid C trick */

/* This fails silently and must be fixed. */

Be very careful when using this function to ensure that you do not produce a
poor output state. (end-user documentation)

How Do We Know Our PRNGs Are Working Properly? 33C3

A Tour of Implementations

/* Put the data into the entropy, add some data from the unknown state, reseed */

/* Take some ”random” data and make more ”random-looking” data from it */

/* Stupid C trick */

/* This fails silently and must be fixed. */

Be very careful when using this function to ensure that you do not produce a
poor output state. (end-user documentation)

How Do We Know Our PRNGs Are Working Properly? 33C3

A Tour of Implementations

/* Put the data into the entropy, add some data from the unknown state, reseed */

/* Take some ”random” data and make more ”random-looking” data from it */

/* Stupid C trick */

/* This fails silently and must be fixed. */

Be very careful when using this function to ensure that you do not produce a
poor output state. (end-user documentation)

How Do We Know Our PRNGs Are Working Properly? 33C3

A Tour of Implementations

/* Put the data into the entropy, add some data from the unknown state, reseed */

/* Take some ”random” data and make more ”random-looking” data from it */

/* Stupid C trick */

/* This fails silently and must be fixed. */

Be very careful when using this function to ensure that you do not produce a
poor output state. (end-user documentation)

How Do We Know Our PRNGs Are Working Properly? 33C3

Mind the supply chain!

A Tour of Implementations

|........blocks*20byte........|20byte|..44byte..|

<..44byte..> <20byte>

| |

| +------+

+---------------------------|----------+

v v

|........blocks*20byte........|20byte|..44byte..|

<.....64bytes.....>

|

+----------------------------------+

Hash

v

|.............................|20byte|..44byte..|

<20byte><20byte><..44byte..>

| |

| +---------------------+

+-----------------------------+ |

v v

|.............................|20byte|..44byte..|

<.....64byte......>

|

+-------------------------+

Hash

v

|.............................|20byte|..44byte..|

<20byte><20byte><..44byte..>

How Do We Know Our PRNGs Are Working Properly? 33C3

A Tour of Implementations

|........blocks*20byte........|20byte|..44byte..|

<..44byte..> <20byte>

| |

| +------+

+---------------------------|----------+

v v

|........blocks*20byte........|20byte|..44byte..|

<.....64bytes.....>

|

+----------------------------------+

Hash

v

|.............................|20byte|..44byte..|

<20byte><20byte><..44byte..>

| |

| +---------------------+

+-----------------------------+ |

v v

|.............................|20byte|..44byte..|

<.....64byte......>

|

+-------------------------+

Hash

v

|.............................|20byte|..44byte..|

<20byte><20byte><..44byte..>

How Do We Know Our PRNGs Are Working Properly? 33C3

Have a (better) design document!

Quality Assurance Measures for PRNGs

How Do We Know Our PRNGs Are Working Properly? 33C3

Quality Assurance Measures for PRNGs

– System-level tests and functional verification

– Unit-level tests and functional verification

How Do We Know Our PRNGs Are Working Properly? 33C3

Quality Assurance Measures for PRNGs

– System-level tests and functional verification
– Unit-level tests and functional verification

How Do We Know Our PRNGs Are Working Properly? 33C3

Quality Assurance Measures for PRNGs

– Statistical tests (DIEHARD, NIST SP800-22, etc.)

– Regression tests (in particular NIST SP 800-90)

How Do We Know Our PRNGs Are Working Properly? 33C3

Quality Assurance Measures for PRNGs

– Statistical tests (DIEHARD, NIST SP800-22, etc.)
– Regression tests (in particular NIST SP 800-90)

How Do We Know Our PRNGs Are Working Properly? 33C3

Quality Assurance Measures for PRNGs

– Manual code review

How Do We Know Our PRNGs Are Working Properly? 33C3

Our Contribution

– Identification of a common PRNG defect: entropy loss
– Entroposcope – a static analysis tool for detecting entropy loss in real

C and Java PRNGs

How Do We Know Our PRNGs Are Working Properly? 33C3

PRNG Operation Cycle (Simplified)

m
ix

se
ed

ou
t

How Do We Know Our PRNGs Are Working Properly? 33C3

PRNG Operation Cycle (Simplified)

m
ix

se
ed

ou
t

How Do We Know Our PRNGs Are Working Properly? 33C3

PRNG Operation Cycle (Simplified)

m
ix

se
ed

ou
t

How Do We Know Our PRNGs Are Working Properly? 33C3

PRNG Operation Cycle (Simplified)

m
ix

se
ed

ou
t

How Do We Know Our PRNGs Are Working Properly? 33C3

PRNG Operation Cycle (Simplified)

m
ix

se
ed

ou
t
We treat a PRNG as a function g∶ {0,1}m → {0,1}n

How Do We Know Our PRNGs Are Working Properly? 33C3

PRNG Operation Cycle (Simplified)

m
ix

se
ed

ou
t

How Do We Know Our PRNGs Are Working Properly? 33C3

Out of Scope: Bad Seeds
– insufficient range (a priori)
– skewed distribution
– known to attacker

PRNG Operation Cycle (Simplified)

m
ix

se
ed

ou
t

How Do We Know Our PRNGs Are Working Properly? 33C3

Out of Scope: Bad Seeds
– insufficient range (a priori)
– skewed distribution
– known to attacker

Out of Scope:
One-Way Functions. . .

– absent or insufficient
– not one-way (e.g.,

Dual EC DRBG)

PRNG Operation Cycle (Simplified)

m
ix

se
ed

ou
t

How Do We Know Our PRNGs Are Working Properly? 33C3

Out of Scope: Bad Seeds
– insufficient range (a priori)
– skewed distribution
– known to attacker

Out of Scope:
One-Way Functions. . .

– absent or insufficient
– not one-way (e.g.,

Dual EC DRBG)

Out of Scope: Very
Powerful Attackers. . .

– inspecting/corrupting
PRNG state

Entropy Loss

The following are equivalent

– PRNG suffers from entropy loss
– Part of seed does not influence output
– Two seeds produce the same output
– Fewer possible outputs than seeds
– g is not injective

Formally
A PRNG g∶ {0,1}m → {0,1}n suffers from entropy loss iff

∃seed1,seed2. (seed1 /= seed2 ∧ g(seed1) = g(seed2)) .

Reasoning complicated by use of crypto functions inside g.

How Do We Know Our PRNGs Are Working Properly? 33C3

Entropy Loss

The following are equivalent

– PRNG suffers from entropy loss
– Part of seed does not influence output
– Two seeds produce the same output
– Fewer possible outputs than seeds
– g is not injective

Formally
A PRNG g∶ {0,1}m → {0,1}n suffers from entropy loss iff

∃seed1,seed2. (seed1 /= seed2 ∧ g(seed1) = g(seed2)) .

Reasoning complicated by use of crypto functions inside g.

How Do We Know Our PRNGs Are Working Properly? 33C3

Entropy Loss

The following are equivalent

– PRNG suffers from entropy loss
– Part of seed does not influence output
– Two seeds produce the same output
– Fewer possible outputs than seeds
– g is not injective

Formally
A PRNG g∶ {0,1}m → {0,1}n suffers from entropy loss iff

∃seed1,seed2. (seed1 /= seed2 ∧ g(seed1) = g(seed2)) .

Reasoning complicated by use of crypto functions inside g.
How Do We Know Our PRNGs Are Working Properly? 33C3

Instances of Entropy Loss

In well-known software

– Debian OpenSSL disaster (CVE-2008-0166)

– Android PRNG bug (CVE-2013-7372)

– Libgcrypt / GnuPG bug (CVE-2016-6313)

m
ix(pid)

se
ed

ou
t

How Do We Know Our PRNGs Are Working Properly? 33C3

Instances of Entropy Loss

In well-known software

– Debian OpenSSL disaster (CVE-2008-0166)

– Android PRNG bug (CVE-2013-7372)

– Libgcrypt / GnuPG bug (CVE-2016-6313)

m
ix(pid)

se
ed

ou
t

How Do We Know Our PRNGs Are Working Properly? 33C3

Instances of Entropy Loss

In well-known software

– Debian OpenSSL disaster (CVE-2008-0166)

– Android PRNG bug (CVE-2013-7372)

– Libgcrypt / GnuPG bug (CVE-2016-6313)

m
ix(pid)

se
ed

ou
t

How Do We Know Our PRNGs Are Working Properly? 33C3

“Easy” instance of entropy loss—

detectable even with gdb (read watchpoint)

Instances of Entropy Loss

In well-known software

– Debian OpenSSL disaster (CVE-2008-0166)

– Android PRNG bug (CVE-2013-7372)

– Libgcrypt / GnuPG bug (CVE-2016-6313)

m
ix(pid)

se
ed

ou
t

How Do We Know Our PRNGs Are Working Properly? 33C3

“Easy” instance of entropy loss—

detectable even with gdb (read watchpoint)

Confine non-determinism!

Test deterministic code!

Instances of Entropy Loss

In well-known software

– Debian OpenSSL disaster (CVE-2008-0166)

– Android PRNG bug (CVE-2013-7372)

– Libgcrypt / GnuPG bug (CVE-2016-6313)

0 4 5 6 7 8

seed counter 0x80000000 . . .

0 3 4 5 6 7 8

counter 0x80000000 seed (rest) 0 . . .00 . . .

How Do We Know Our PRNGs Are Working Properly? 33C3

Instances of Entropy Loss

In well-known software

– Debian OpenSSL disaster (CVE-2008-0166)

– Android PRNG bug (CVE-2013-7372)

– Libgcrypt / GnuPG bug (CVE-2016-6313)

later

How Do We Know Our PRNGs Are Working Properly? 33C3

Analysis Procedure

1. User isolates the deterministic part of PRNG

2. User chooses analysis scope (m,n)
3. User replace crypto functions with idealizations
4. Entroposcope generates & checks verification condition
5. If potential entropy loss found, visualization

How Do We Know Our PRNGs Are Working Properly? 33C3

Analysis Procedure

1. User isolates the deterministic part of PRNG
2. User chooses analysis scope (m,n)

3. User replace crypto functions with idealizations
4. Entroposcope generates & checks verification condition
5. If potential entropy loss found, visualization

How Do We Know Our PRNGs Are Working Properly? 33C3

Analysis Procedure

1. User isolates the deterministic part of PRNG
2. User chooses analysis scope (m,n)
3. User replace crypto functions with idealizations

4. Entroposcope generates & checks verification condition
5. If potential entropy loss found, visualization

How Do We Know Our PRNGs Are Working Properly? 33C3

Analysis Procedure

1. User isolates the deterministic part of PRNG
2. User chooses analysis scope (m,n)
3. User replace crypto functions with idealizations
4. Entroposcope generates & checks verification condition

5. If potential entropy loss found, visualization

How Do We Know Our PRNGs Are Working Properly? 33C3

Analysis Procedure

1. User isolates the deterministic part of PRNG
2. User chooses analysis scope (m,n)
3. User replace crypto functions with idealizations
4. Entroposcope generates & checks verification condition
5. If potential entropy loss found, visualization

How Do We Know Our PRNGs Are Working Properly? 33C3

Demo

How Do We Know Our PRNGs Are Working Properly? 33C3

Crypto Function Idealization (Example)

From OpenSSL’s RAND_add():

sha1(local_md [0..19] | state [0..19] | buf [0..19] | md_count)

How Do We Know Our PRNGs Are Working Properly? 33C3

Crypto Function Idealization (Example)

From OpenSSL’s RAND_add():

sha1(local_md [0..19] | state [0..19] | buf [0..19] | md_count)

How Do We Know Our PRNGs Are Working Properly? 33C3

20+20+20+8

20

Crypto Function Idealization (Example)

From OpenSSL’s RAND_add():

sha1(local_md [0..19] | state [0..19] | buf [0..19] | md_count)

How Do We Know Our PRNGs Are Working Properly? 33C3

20+20+20+8

20

Crypto Function Idealization (Example)

From OpenSSL’s RAND_add():

sha1(local_md [0..19] | state [0..19] | buf [0..19] | md_count)

Unsound idealization (useful!)
memcpy()

How Do We Know Our PRNGs Are Working Properly? 33C3

20+20+20+8

20

Crypto Function Idealization (Example)

From OpenSSL’s RAND_add():

sha1(local_md [0..19] | state [0..19] | buf [0..19] | md_count)

Unsound idealization (useful!)
memcpy()

Sound idealization
Underspecified injective function

How Do We Know Our PRNGs Are Working Properly? 33C3

20+20+20+8

20

Implementation

based on

CBMC MINISAT
bounded model checker
for C and Java

boolean satisfiability checker

cprover.org minisat.se

How Do We Know Our PRNGs Are Working Properly? 33C3

cprover.org
minisat.se

Implementation

– CBMC computes g(⋅) as propositional formula

– Entroposcope generates

seed1 /= seed2 ∧ g(seed1) = g(seed2) (∗)

– MINISAT checks (∗) for satisfiability
– If (∗) has a model, Entroposcope visualizes the entropy loss

Analysis duration ∼30s

How Do We Know Our PRNGs Are Working Properly? 33C3

Implementation

– CBMC computes g(⋅) as propositional formula
– Entroposcope generates

seed1 /= seed2 ∧ g(seed1) = g(seed2) (∗)

– MINISAT checks (∗) for satisfiability
– If (∗) has a model, Entroposcope visualizes the entropy loss

Analysis duration ∼30s

How Do We Know Our PRNGs Are Working Properly? 33C3

Implementation

– CBMC computes g(⋅) as propositional formula
– Entroposcope generates

seed1 /= seed2 ∧ g(seed1) = g(seed2) (∗)

– MINISAT checks (∗) for satisfiability

– If (∗) has a model, Entroposcope visualizes the entropy loss

Analysis duration ∼30s

How Do We Know Our PRNGs Are Working Properly? 33C3

Implementation

– CBMC computes g(⋅) as propositional formula
– Entroposcope generates

seed1 /= seed2 ∧ g(seed1) = g(seed2) (∗)

– MINISAT checks (∗) for satisfiability
– If (∗) has a model, Entroposcope visualizes the entropy loss

Analysis duration ∼30s

How Do We Know Our PRNGs Are Working Properly? 33C3

Implementation

– CBMC computes g(⋅) as propositional formula
– Entroposcope generates

seed1 /= seed2 ∧ g(seed1) = g(seed2) (∗)

– MINISAT checks (∗) for satisfiability
– If (∗) has a model, Entroposcope visualizes the entropy loss

Analysis duration ∼30s

How Do We Know Our PRNGs Are Working Properly? 33C3

Results of Applying the Tool

– BoringSSL
– Yarrow (Apple XNU port)
– s2n
– Android PRNG (Apache Harmony)
– OpenSSL
– Libgcrypt / GnuPG

How Do We Know Our PRNGs Are Working Properly? 33C3

Results of Applying the Tool

– BoringSSL
– Yarrow (Apple XNU port)
– s2n
– Android PRNG (Apache Harmony)
– OpenSSL
– Libgcrypt / GnuPG

The good cases
No entropy loss detected in analysis scope

How Do We Know Our PRNGs Are Working Properly? 33C3

Results of Applying the Tool

– BoringSSL
– Yarrow (Apple XNU port)
– s2n
– Android PRNG (Apache Harmony)
– OpenSSL
– Libgcrypt / GnuPG

Android PRNG (Apache Harmony)
Known entropy loss detected

How Do We Know Our PRNGs Are Working Properly? 33C3

Results of Applying the Tool

– BoringSSL
– Yarrow (Apple XNU port)
– s2n
– Android PRNG (Apache Harmony)
– OpenSSL
– Libgcrypt / GnuPG

OpenSSL

– Debian disaster detected
– Entropy loss by design detected
– Previously unknown entropy loss detected

How Do We Know Our PRNGs Are Working Properly? 33C3

Results of Applying the Tool

– BoringSSL
– Yarrow (Apple XNU port)
– s2n
– Android PRNG (Apache Harmony)
– OpenSSL
– Libgcrypt / GnuPG

Critical bug found in Libgcrypt and in GnuPG 1.4:

lists.gnupg.org/pipermail/gnup… - fixes are released.

6:23 PM - 17 Aug 2016

125 53

GNU Privacy Guard

@gnupg

 Follow

file:///home/vladimir/Oldworkingcopies/PRNG/ccs/slides/t...

1 of 1 08/22/16 01:25

How Do We Know Our PRNGs Are Working Properly? 33C3

Mixing Function Proposal by Gutmann [USENIX ’98]

20+20+44

20

successive

hashes

hash

How Do We Know Our PRNGs Are Working Properly? 33C3

Mixing Function Implemented in Libgcrypt (1)

20 44

20

successive

hashes

hash

How Do We Know Our PRNGs Are Working Properly? 33C3

Mixing Function Implemented in Libgcrypt (2)

44 20

20

2 1

hash

How Do We Know Our PRNGs Are Working Properly? 33C3

Conclusion

@dguido FWIW, this small function had external audits several

times and nobody spotted the algorithmic problem.

8:39 PM - 17 Aug 2016

1

GNU Privacy Guard

@gnupg

 Follow

file:///home/vladimir/tweet.html

1 of 1 08/20/16 01:11

How Do We Know Our PRNGs Are Working Properly? 33C3

Conclusion

@dguido FWIW, this small function had external audits several

times and nobody spotted the algorithmic problem.

8:39 PM - 17 Aug 2016

1

GNU Privacy Guard

@gnupg

 Follow

file:///home/vladimir/tweet.html

1 of 1 08/20/16 01:11

How Do We Know Our PRNGs Are Working Properly? 33C3

Audits are essential—

but so are technical assurance measures!

Thanks!

Questions?

How Do We Know Our PRNGs Are Working Properly? 33C3

Why is a Partial Predictability Bad?

If an attacker has access to the first 580 byte, wouldn’t they have access to the
following 20 as well?

– Random data used for different purposes
– Help for a brute-force attacker

How Do We Know Our PRNGs Are Working Properly? 33C3

What is the Impact?

For practical impact, more than 600 bytes have to be requested in one chunk
(as the output pool is emptied after each request).

Impact on GnuPG RSA keys:
– GnuPG requests random data for RSA keys in several small(er) chunks
– Keys shorter than 4096 bits are probably fine

Impact on other applications using the Libgcrypt PRNG:
– Impossible to tell

How Do We Know Our PRNGs Are Working Properly? 33C3

Just Use /dev/urandom!

Fixing flaws does not take away other options.

How do you know the kernel PRNG is bug-free?

All entropy-processing applications are susceptible.

– Linux ASLR bug (CVE-2015-1593)

– Early German debit card system flaw (“EC-Karte”)
– ASF Software Inc. online poker software flaw

How Do We Know Our PRNGs Are Working Properly? 33C3

Just Use /dev/urandom!

Fixing flaws does not take away other options.

How do you know the kernel PRNG is bug-free?

All entropy-processing applications are susceptible.

– Linux ASLR bug (CVE-2015-1593)

– Early German debit card system flaw (“EC-Karte”)
– ASF Software Inc. online poker software flaw

How Do We Know Our PRNGs Are Working Properly? 33C3

Entropy Loss in Linux ASLR (CVE-2015-1593)

1 static unsigned long randomize_stack_top(

2 unsigned long stack_top)

3 {

4 unsigned int random_variable = 0;

5

6 if ((current ->flags & PF_RANDOMIZE) &&

7 !(current ->personality & ADDR_NO_RANDOMIZE)) {

8 random_variable = get_random_int () & STACK_RND_MASK;

9 random_variable <<= PAGE_SHIFT;

10 }

11 #ifdef CONFIG_STACK_GROWSUP

12 return PAGE_ALIGN(stack_top) + random_variable;

13 #else

14 return PAGE_ALIGN(stack_top) - random_variable;

15 #endif

16 }

How Do We Know Our PRNGs Are Working Properly? 33C3

	A Horror Movie (V)
	PRNG Concepts and Concerns (V)
	Entropy Loss (V)
	Instances of Entropy Loss (F)
	Analysis Procedure, Demo (F)
	Dealing with Crypto Primitives (V)
	Implementation Architecture and Details (V)
	Case Studies (F)

