
Wheel	of	Fortune
ANALYZING	EMBEDDED	OS	(CS)PRNGS

JOS 	WETZE LS
AL I 	 ABBAS I



WHOIS

• Jos	Wetzels1,2
• Researcher,	MSc	student
• samvartaka.github.io

• Ali	Abbasi1,3
• Ph.D.	candidate
• http://wwwhome.cs.utwente.nl/~abbasia/

1Distributed	and	Embedded	System	Security	(DIES)	group,	University	of	Twente,	Netherlands

2SEC	Group,	Eindhoven	University	of	Technology,	Netherlands

3SYSSEC	Group,	Ruhr-University	Bochum,	Germany



ABOUT

• Introduction	to	Embedded	OS	Random	Number	
Generators

• Embedded	Challenges	Overview

• Case	Studies

• Product	of	ongoing	research



EMBEDDED	SYSTEMS	ARE	EVERYWHERE



EMBEDDED	SYSTEMS	ARE	BOOMING

©	DigiReach



EMBEDDED	RANDOMNESS	IS	HARD



ROADMAP

• Why	Does	This	Matter?

• OS	PRNGs

• Embedded	Challenges

• Case	Studies



SOME	TERMS

• Interested	in	random bits
• Cannot	predict	next	bit	with	Pr.	>	0.5

• Entropy	(Shannon	/	Renyi /	…)
• Measure	of	information	unpredictability
• High	entropy	→	very	random



WHY	RANDOMNESS	IS	IMPORTANT?

• Cryptography
• Keys,	Nonces,	Etc.

• Exploit	Mitigations
• ASLR	→	Randomize	address	space
• Stack	Smashing	Protection	→	Randomize	canaries

• Randomness	is	critical to	security	ecosystem
• Failure	has	massive	impact



TRUE	RANDOM	NUMBER	GENERATORS
• Physical	(‘true’)	entropy	source

• Radioactive	Decay,	Shot	Noise,	Etc.

• Two	ways	to	implement	it:
• External	(dedicated	device)

• Trusted	Platform	Module	(TPM)
• Hardware	Security	Module	(HSM)

• Integrated
• Intel	Ivy	Bridge	RdRand
• Certain	Smartcards

• Downsides
• Expensive
• Portability	issues



PSEUDO	RANDOM	NUMBER	GENERATORS

• Software	based

• Deterministic	algorithm

• Stretch	seed	into	sequence	of	random-looking	bits

• Not	all	PRNGs	are	suitable	for	security	purposes
• rand(),	LCGs,	Mersenne Twister,	etc.



CRYPTOGRAPHICALLY	SECURE	PRNGs	(CSPRNGs)

• Properties
• Pseudo-Randomness
• Outputs	indistinguishable	from	uniform
(to	attacker	with	no	knowledge	of	internal	state)

• Forward	Security
• Internal	state	compromise	→	Past	outputs	still	appear	random

• Backward	Security
• Internal	state	compromise	→	Future	outputs	still	appear	random	
(provided	we	reseed	with	sufficient	entropy)



CSPRNG	DESIGN
• CSPRNG	design	is	not	trivial!

• Algorithm	Standardization	(eg.	NIST	SP	800-90A)
• Assume	access	to	(possibly	biased)	source	of	seed	entropy

• Still	Leaves	Hard	problems
• Initial	Seed	Entropy
• Reseeding	Control
• Entropy	Source	Quality	Measurement

• Dedicated	designs	(Yarrow,	Fortuna)
• OS	X,	iOS,	AIX,	FreeBSD

Yarrow



SOURCES	OF	ENTROPY
• Chicken-and-Egg	Problem

• Need	to	collect	‘true’	entropy	for	(re)seed

• Ideal:	Physical	Phenomena
• QR:	Radioactive	Decay,	Shot	Noise
• Non-QR:	Thermal	Noise,	Atmospheric	
Noise,	Sensor	Values

• Practical:	‘Unpredictable’	System	Events
• Keystroke	timings
• Mouse	movements
• Disk	access



RANDOMNESS	AS	A	SYSTEM	SERVICE

• CSPRNGs	hard	to	design	&	implement	correctly
• Secure	randomness	should	be	system	service provided	by	OS

• Many	OSes	provide	secure	randomness	as	system	service
• /dev/urandom device	on	Unix-like,	CryptGenRandom API	on	Windows

• Many	security	products	assume	OS	CSPRNG	exists
• eg.	OpenSSL (products	built	on	top:	OpenSSH,	OpenVPN,	etc.)



ROADMAP

• Why	Does	This	Matter?

• OS	PRNGs

• Embedded	Challenges

• Case	Studies



CSPRNGS	&	THE	EMBEDDED	WORLD

• “just	use	/dev/urandom”	not	as	easy	in	embedded

• Design	plagued	by	issues	not	common	in	general-
purpose	world

• Result:	OS	CSPRNG	often	absent	or	broken



EMBEDDED	CSPRNG	CHALLENGES

• Polyculture

• Resource	Constraints

• Low	Entropy	Environment



POLYCULTURE:	OPERATING	SYSTEMS



POLYCULTURE:	HARDWARE



RESOURCE	CONSTRAINTS

• Small	footprint,	Resource	Efficient

• Limitations
• CPU	Speed	→	Lightweight	Crypto

• Power	Consumption	→	Simple	Design,	Limited	
Polling

• Memory	→	Small	Entropy	Pool	&	Internal	State

eg.	STM32F0	(ARM	Cortex-M0)
*	16-256kb	flash
*	4-32kb	RAM
*	48	MHz	CPU	



LOW	ENTROPY	ENVIRONMENT
• Embedded	systems	are	‘boring’

• Little,	predictable	activity

• Entropy	Source	Problems
• Diskless	nodes
• No	peripherals,	No	user
• No	hardware	RNGs

• Not	all	interrupts	good	source
• Too	periodic



BOOT	TIME	ENTROPY	ISSUES

• Entropy	Conditions	Worst	At	Boot
• Predictable	Boot	Sequences
• Little	Interaction
• Some	Entropy	Sources	Not	Available	Yet

• Non-blocking	interfaces	(/dev/urandom)	allow	for	drawing	from	
PRNG	even	when	insufficient	entropy	available

• Result:	“Boot-Time	Entropy	Hole”



BOOT	TIME	ENTROPY	ISSUES
• Embedded	Device	Crypto	Keys	Often	Generated	on	First	Boot

• Initial	System	State	Predetermined	in	Factory	+	“boot-time	entropy	hole”	→	
uhoh…

• Solution:	Seed	File

• Embedded	Issues
• Diskless	Nodes?
• Entropy	before	FS	mounted?
• First	system	boot?



EMBEDDED	‘WORKAROUNDS’

• Initial	Seed	File	in	Firmware	(Better	be	unique	&	unpredictable)

• ‘Personalization’	Data	as	Seed	Entropy	(own	MAC,	serial	#,	etc.)

• Other	Dubious	Entropy	Sources	(Clock,	PIDs,	Foreign	MACs,	etc.)

• Hardcoded	Pregenerated Keys	(see	LittleBlackBox)

*	Scrutinizing	WPA2	Password	Generating	Algorithms	in	Wireless	Routers -
Lorente,	Meijer,	Verdult



ROADMAP

• Why	Does	This	Matter?

• OS	PRNGs

• Embedded	Challenges

• Case	Studies



CASE	STUDY:	QNX	(6.6)

• UNIX-like,	POSIX	RTOS,	initial	release	1982,	acquired	by	BlackBerry



CASE	STUDY:	QNX
• Provides	custom	/dev/urandom implementation

• Always	non-blocking

• Implemented	as	userspace process	addressed	by	kernel	resource	manager	
(QNX	is	microkernel)

• Started	after	boot	via	/etc/rc.d/startup.sh



QNX	/DEV/URANDOM:	DESIGN

• PRNG	based	on	Yarrow	(Schneier,	Kelsey,	Ferguson)

• But based	on	older	Yarrow	0.8.71,	not	reference	Yarrow-160
• Single	entropy	pool	(no	fast	&	slow	pools)
• No	block	cipher	applied	to	PRNG	output	(directly	from	internal	state)

• QNX	Yarrow	diverges	from	Yarrow	0.8.71	as	well
• Mixes	PRNG	output	back	into	entropy	pool
• Reseed	Control:	Custom	(QNX	6.6.0)	or	Absent	(older	versions)



QNX	/DEV/URANDOM	DESIGN



TESTING	PRNG	OUTPUT	QUALITY

• Tested	‘randomness	quality’	of	/dev/urandom output
• DieHarder
• NIST	(SP800-22) Statistical	Test	Suite	(STS)

• Passed	both	test	suites,	but
• Only	tells	us	about	PRNG	output	quality
• source	entropy	can	still	be	heavily	biased



QNX	BOOT-TIME	ENTROPY



TESTING	BOOT-TIME	ENTROPY	QUALITY

• Evaluate	quality	of	boot-time	entropy
• If	very	biased	→	feasible	for	attacker	to	replicate	PRNG	internal	state	after	
reasonable	#	of	guesses

• Quality	measure:	min-entropy
• “How	likely	is	one	to	guess	value	on	first	try?”
• 256	bits	uniformly	random	data	→	256	bits	of	min	entropy

• NIST	(SP800-90B)	Entropy	Source	Testing	(EST)	tool



TESTING	BOOT-TIME	ENTROPY	QUALITY
• Collected	50	boot	runs

• Instrumenting	yarrow_init_poll and	
logging	raw	data

• avg.	min-entropy:	0.0276

• Far	less	than	1	bit	of	min	entropy	per	
8	bits	of	raw	data

• binvis.io	visualization
• Clear	low-entropy	spots	(darker)

QNX	Boot-Time	Noise



TESTING	BOOT-TIME	ENTROPY	QUALITY

• Consistent,	predictable	patterns	across	
reboots
• See	visualization	of	50	boot	runs

• Consider	firmware	image
• Same	processes	spawning	in	same	order
• Same	device	names
• Only	‘randomness’	comes	from	ClockTime /	
ClockCycles

• ClockCycles mixed	in	between	dir read	
operations	→	jitter	minimal	due	to	RTOS	nature

QNX	boot-time	noise	restart	mapping



QNX	RUN-TIME	ENTROPY



SOME	THOUGHTS	ON	RUN-TIME	ENTROPY

• System	Information	Poll
• Lots	of	static	info	(uid,	flags,	priority,	stack	&	program	base	(if	no	ASLR),	etc.)
• Time	or	program-state	based	randomness

• Interrupt	Timing
• Interrupts	might	be	barely	triggered,	burden	on	developer
• If	we	cannot	attach	to	interrupt	→	fail	silently,	no	actual	entropy	gathered



QNX	RESEED	CONTROL	(<	6.6.0)

• Older	QNX	verions had	no reseed	control
• yarrow_allow_reseed /	yarrow_force_reseed implemented
• But	never	actually	invoked!

• Runtime	entropy	accumulated	but	never	mixed	into	state
• Boot-Time	Entropy	→	Only Entropy

• This	is	very	dangerous



QNX	RESEED	CONTROL	(6.6.0)

• QNX	6.6.0	integrates	reseeding	in	two	functions
• yarrow_do_sha1 &	yarrow_make_new_state

• Called	during	init &	output
• Whenever	PRNG	outputs	→	reseed

• Issue:	No	entropy	estimation	(Yarrow	Required!)
• Reseed	all	the	time	regardless	of	what’s	in	entropy	pool



UPCOMING	IMPROVEMENTS	&	PATCHES

• Disclosed	issues	to	BlackBerry

• New	Fortuna-based	PRNG
• Successor	to	Yarrow

• Available	in	patches	for	QNX	6.6

• Default	in	upcoming	QNX	7



CASE	STUDY:																															[REDACTED,	NDA]

• POSIX-compliant	RTOS	used	in	highly	sensitive	systems



• RNG	in	/dev/urandom

• urandom_read(buffer,	N)
• Fill	buffer	with	N	bytes	from	random()

• urandom_write(buffer)
• (Re)Seed	PRNG	with	first	DWORD	only from	buffer

CASE	STUDY:																															[REDACTED,	NDA]



/DEV/URANDOM	DESIGN

• Investigated	underlying	PRNG

• Based	on	glibc BSD	random(3)	with	custom	constants

• Not a	CSPRNG



LOCAL	RESEED	ATTACK

• /dev/urandom world-writable:	Anyone	can	force	PRNG	reseed



KNOWN	SEED	ATTACK

• Static	Initial	Seed→	srandom(0x…..)

• No	Reseeding

• No	actual	entropy	consumed	by	PRNG ……



KNOWN	SEED	ATTACK

• If	we	know	PRNG	seed	we	know	/dev/urandom output	consumed	
by	crypto	applications...



KNOWN	SEED	ATTACK

• Consider	target	(RSA	/	DSA)	
public	key	generated	on	
[REDACTED]	OS
• We	know	initial	PRNG	seed

• Brute-Force	state	offset	until	
pubkey match
• Bounded	by	number	of	bytes	likely	
read	(<	232)

• We	can	even	precompute	this!



KNOWN	SEED	ATTACK
(NO	LIVE	DEMO,	NDA	L)



CASE	STUDY:	VXWORKS	(6.9)

• RTOS,	initial	release	1987



BURDEN	ON	DEVELOPER…

• VxWorks	provides	no OS	CSPRNG

OpenSSL

CryptLib WolfSSL



…	WITH	PREDICTABLE	CONSEQUENCES



…	EMBEDDED	OS	CSPRNG	SUPPORT

Support
40%

No	
Support
60%

SURVEY	OF	35	EMBEDDED	
OPERATING	SYSTEMS

• VxWorks	far from	only	one	
with	these	problems

• Majority	embedded	OSes	
lack	CSPRNG
• Esp.	tiny	RTOSes for	deeply	
embedded	systems



TAKEAWAYS
• Embedded	world	is	harsh

• Constraints,	Constraints	everywhere
• Entropy	issues	are	serious

• CSPRNG	design	is	not	a	joke
• Secure	randomness	should	be	OS	service	(whenever	possible)
• Don’t	put	burden	on	developers	because	they	willmess	up!

• More	scrutiny	required
• “just	use	/dev/urandom”	shouldn’t	land	you	in	trouble
• Too	much	of	embedded	security	is	still	Terra	Incognita



QUESTIONS?
Looking	for	more	technical	details	on	Embedded	security?	

Attend	our	talk	at	USENIX	Enigma	2017



REFERENCES
• https://cseweb.ucsd.edu/~swanson/papers/Oakland2013EarlyEntropy.pdf

• https://factorable.net/weakkeys12.extended.pdf

• https://smartfacts.cr.yp.to/smartfacts-20130916.pdf

• https://www.usenix.org/system/files/conference/woot15/woot15-paper-lorente.pdf

• http://blog.sec-consult.com/2015/11/house-of-keys-industry-wide-https.html

• www.phy.duke.edu/~rgb/General/dieharder.php ,	
http://csrc.nist.gov/groups/ST/toolkit/rng/documents/SP800-22rev1a.pdf ,	
http://csrc.nist.gov/publications/drafts/800-90/sp800-90b_second_draft.pdf

• https://eprint.iacr.org/2013/338.pdf

• https://www.schneier.com/academic/yarrow/ ,	https://www.schneier.com/academic/fortuna/

• http://windriver.com/products/vxworks/ ,http://www.qnx.com/products/neutrino-
rtos/neutrino-rtos.html


