Wheel of Fortune
ANALYZING EMBEDDED OS (CS)PRNGS

JOS WETZELS
ALl ABBASI

SNV

Jos Wetzels!?2
Researcher, MSc student

Ali Abbasil?3
Ph.D. candidate

IDistributed and Embedded System Security (DIES) group, University of Twente, Netherlands
2SEC Group, Eindhoven University of Technology, Netherlands

3SYSSEC Group, Ruhr-University Bochum, Germany

ABOUT

Introduction to Embedded OS Random Number
Generators

Embedded Challenges Overview

Case Studies

Product of ongoing research

EMBEDDED SYSTEMS ARE EVERYWHERE

N
AN/

ARNNNIAN
g N

R
A
178N\
[Sk

R Wy : \
N ,__\l\-?‘-\

- THE INTERNET OF THINGS S

AN EXPLOSION OF CONNECTED POSSIBILITY -
42.1 BILLION

34.8 BILLION

22.9 BILLION @

]
w
o
>
w
o
w“
o
]
o
|
-
o

0.7 BILLON (@[]

loT INCEPTION ®
()4 1,000,000 0.5 BILLION ({am]

O

© DigiReach

Millions of embedded devices use the same
hard-coded SSH and TLS private keys

Digital key reuse leaves millions of | Western Digital self-encrypting hard
network devices wide open. drives riddled with security flaws

Residential routers easy to hack| WiFi routers have predictable SSID and WPA keys

"Worrying' 9 Per Cent Of Encrypted Web Vulnerable To Private Key § Every Bitcoin wallet on Android is
Attacks vulnerable to attack

Entropy drought hits Raspberry Piharvests, | Dutch ISPs making router passwords too easy for
Weakens SSH security hackers
Bad Crypto Key Hygiene Equals Internet of JReuse of Cryptographic Keys Exposes Millions of

Things Danger

ROADMAP

* Why Does This Matter?

* OS PRNGs

* Embedded Challenges

* Case Studies

Interested in random bits
Cannot predict next bit with Pr. > 0.5

Entropy (Shannon / Renyi/ ...)
Measure of information unpredictability
High entropy - very random

Cryptography

Keys, Nonces, Etc.

Exploit Mitigations
ASLR - Randomize address space
Stack Smashing Protection > Randomize canaries

Randomness is critical to security ecosystem
Failure has massive impact

TRUE RANDOM NUMBER GENERATORS

* Physical (‘true’) entropy source
- Radioactive Decay, Shot Noise, Etc.

* Two ways to |rr-1plement- it: e T - IHHHHII}H"" >
- External (dedicated device) I o
Trusted Platform Module (TPM) .
Hardware Security Module (HSM)
- Integrated
Intel Ivy Bridge RdRand
Certain Smartcards

* Downsides
- Expensive
- Portability issues

I RS

PSEUDO RANDOM NUMBER GENERATORS

Software based

RANDOM

SEED BITS

Deterministic algorithm

Stretch seed into sequence of random-looking bits

Not all PRNGs are suitable for security purposes
- rand(), LCGs, Mersenne Twister, etc.

Properties
Pseudo-Randomness

Outputs indistinguishable from uniform
(to attacker with no knowledge of internal state)

Forward Security

Internal state compromise - Past outputs still appear random

Backward Security

Internal state compromise - Future outputs still appear random
(provided we reseed with sufficient entropy)

CSPRNG design is not trivial!

Algorithm Standardization (eg. NIST SP 800-90A)
Assume access to (possibly biased) source of seed entropy

Still Leaves Hard problems
Initial Seed Entropy
Reseeding Control
Entropy Source Quality Measurement

Dedicated designs (Yarrow, Fortuna)
0S X, i0S, AIX, FreeBSD

ENTROPY SOURCES
ACCUMULATOR pill

] ¥

FAST POOL SLOW POOL

RESEED
GENERATOR

KEY
(INTERNAL
STATE)

OUTPUT RANDOM
GENERATOR [:/15S

Yarrow

SOURCES OF ENTROPY

* Chicken-and-Egg Problem

|
- Need to collect ‘true’ entropy for (re)seed nterrupt

Requests

T

Hardware

* ldeal: Physical Phenomena
- QR: Radioactive Decay, Shot Noise

- Non-QR: Thermal Noise, Atmospheric
Noise, Sensor Values

Disk Activity .
* Practical: ‘Unpredictable’ System Events \/‘]I
- Keystroke timings
- Mouse movements '

- Disk access _
Input Devices

CSPRNGs hard to design & implement correctly
Secure randomness should be system service provided by OS

Many OSes provide secure randomness as system service
/dev/urandom device on Unix-like, CryptGenRandom APl on Windows

Many security products assume OS CSPRNG exists
eg. OpenSSL (products built on top: OpenSSH, OpenVPN, etc.)

/

ROADMAP

* Why Does This Matter?

* OS PRNGs

* Embedded Challenges

* Case Studies

CSPRNGS & THE EMBEDDED WORLD

* “just use /dev/urandom” not as easy in embedded

* Design plagued by issues not common in general-
purpose world

* Result: OS CSPRNG often absent or broken

Polyculture

Resource Constraints

Low Entropy Environment

OpenWrt

ViielessiEreedom)

VxWo rks

e¢°53
QS PROJECT

Real-time Windows THREADX

MANTIS

‘SuperH

9L
: (infineon

Small footprint, Resource Efficient

Limitations
CPU Speed - Lightweight Crypto

Power Consumption - Simple Design, Limited
Polling

Memory - Small Entropy Pool & Internal State

eg. STM32F0 (ARM Cortex-MO)
* 16-256kb flash
*4-32kb RAM
*48 MHz CPU

LOW ENTROPY ENVIRONMENT

* Embedded systems are ‘boring’
- Little, predictable activity

* Entropy Source Problems
- Diskless nodes
- No peripherals, No user
- No hardware RNGs

* Not all interrupts good source
- Too periodic

Disk Activity

Input Devices

Interrupt
Requests

Hardware
RNGs

Entropy Conditions Worst At Boot
Predictable Boot Sequences
Little Interaction
Some Entropy Sources Not Available Yet

Non-blocking interfaces (/dev/urandom) allow for drawing from
PRNG even when insufficient entropy available

Result: “Boot-Time Entropy Hole”

BOOT TIME ENTROPY ISSUES

* Embedded Device Crypto Keys Often Generated on First Boot

- Initial System State Predetermined in Factory + “boot-time entropy hole” -
uhoh...

Ivarl...Ilrandom-seed

* Solution: Seed File
STARTUP
* Embedded Issues
- Diskless Nodes?
- Entropy before FS mounted?
t7SHUTDOWN

« First system boot?

Initial Seed File in Firmware (Better be unique & unpredictable)
‘Personalization’” Data as Seed Entropy (own MAC, serial #, etc.)
Other Dubious Entropy Sources (Clock, PIDs, Foreign MACs, etc.)
Hardcoded Pregenerated Keys (see LittleBlackBox)

SSID (Network Name): BD3EAC
WPA/WPA2 (Wireless Key): \

CERTIFIED

i C € © K (mumunmmm

'BD3EAB S/N: JEI016182

* Scrutinizing WPA2 Password Generating Algorithms in Wireless Routers -
Lorente, Meijer, Verdult

ROADMAP

* Why Does This Matter?

* OS PRNGs

* Embedded Challenges

e Case Studies

CASE STUDY: QNX (6.6) =22 AN

* UNIX-like, POSIX RTOS, initial release 1982, acquired by BlackBerry

RADIATION

HAZA|

EXISTS
BETWEEN
FLASHING
LIGHTS §

Provides custom /dev/urandom implementation
Always non-blocking

Implemented as userspace process addressed by kernel resource manager
(QNX is microkernel)

Started after boot via /etc/rc.d/startup.sh

ps -e -0 pid,uid,args | grep random
4115 0 random -t
282651 0 grep random
1s -la /dev/urandom
nrw-r--r-- 1 root root 0 Sep 07 14:57 /dev/urandom

PRNG based on Yarrow (Schneier, Kelsey, Ferguson)

But based on older Yarrow 0.8.71, not reference Yarrow-160
Single entropy pool (no fast & slow pools)
No block cipher applied to PRNG output (directly from internal state)

QNX Yarrow diverges from Yarrow 0.8.71 as well
Mixes PRNG output back into entropy pool
Reseed Control: Custom (QNX 6.6.0) or Absent (older versions)

Gather Run-Time

Entropy

Gather Boot-Time

Entropy
ENTROPY PRNG
POOL STATE

QNX Yarrow Output

Function

|

Random Bits

Tested ‘randomness quality’ of /dev/urandom output
DieHarder
NIST (SP800-22) Statistical Test Suite (STS)

Passed both test suites, but
Only tells us about PRNG output quality
source entropy can still be heavily biased

Idev Names
(/devinull,

Iproc PIDs

(Iproci1, proci2) Ideviconsole)

QNX Yarrow
Initial State

Evaluate quality of boot-time entropy

If very biased - feasible for attacker to replicate PRNG internal state after
reasonable # of guesses

Quality measure: min-entropy
“How likely is one to guess value on first try?”
256 bits uniformly random data - 256 bits of min entropy

NIST (SP800-90B) Entropy Source Testing (EST) tool

TESTING BOOT-TIME ENTROPY QUALITY

Collected 50 boot runs

- Instrumenting yarrow_init_poll and
logging raw data

* avg. min-entropy: 0.0276

Far less than 1 bit of min entropy per
8 bits of raw data

binvis.io visualization
+ Clear low-entropy spots (darker)

QNX Boot-Time Noise

TESTING BOOT-TIME ENTROPY QUALITY

* Consistent, predictable patterns across
reboots

- See visualization of 50 boot runs

* Consider firmware image
- Same processes spawning in same order
- Same device names

- Only ‘randomness’ comes from ClockTime /
ClockCycles

- ClockCycles mixed in between dir read

operations = jitter minimal due to RTOS nature
P 2 J QNX boot-time noise restart mapping

N =
yarrow_output()

Iproc/<PID> info
(pid, tid, flags, stackptr, SYSTEM INFO

HIGH etc.) 2Jo] HER-{e]V]:{es = yarrow_output()

PERFORMANCE
CLOCK SOURCE

delay(N)

ClockCycles()

ClockTime() delay(N)

SHA1
yarrow_input()

N=

callback()
yarrow_output() LIBRARY SOURCE
INTERRUPT (UNDOCUMENTED,
TIMING SOURCE HINTED AT TRNG

COMPATIBILITY)
interrupt X

triggered >= ClockTime()

N times?

System Information Poll
Lots of static info (uid, flags, priority, stack & program base (if no ASLR), etc.)
Time or program-state based randomness

Interrupt Timing
Interrupts might be barely triggered, burden on developer
If we cannot attach to interrupt - fail silently, no actual entropy gathered

Older QNX verions had no reseed control
yarrow_allow_reseed [yarrow_force reseed implemented
But never actually invoked!

Runtime entropy accumulated but never mixed into state
Boot-Time Entropy - Only Entropy

This is very dangerous

QNX 6.6.0 integrates reseeding in two functions
yarrow_do_shal & yarrow_make _new_state

void yarrow_do shal(yarrow t *p, yarrow g
{
SHA1Init(&sha);
. . . IncGaloisCounter5X32(p->pool.state);
Called durlng Inlt & Output Sha_state[@] A= p-)pool_state[d];
sha.state[1] ~= p->pool.state[3];
Whenever PRNG Outputs - reseed sha.state[2] ~= p->pool.state[2];
sha.state[3] ~= p->pool.state[1];
sha.state[4] ~= p->pool.state[0];
SHA1Update(&sha, ctx->iv, 20);
SHA1Update(&sha, ctx->out, 20);
SHA1Final(ctx->out, &sha);

}

Issue: No entropy estimation (Yarrow Required!)
Reseed all the time regardless of what’s in entropy pool

UPCOMING IMPROVEMENTS & PATCHES

* Disclosed issues to BlackBerry

* New Fortuna-based PRNG

- Successor to Yarrow

* Available in patches for QNX 6.6

* Default in upcoming QNX 7

CASE STUDY: | [REDACTED, NDA]

* POSIX-compliant RTOS used in highly sensitive systems

JIRS Inc 1 Network Architecture Overview

T o e

GIG
Teteport/ MY

RNG in /dev/ura ndom _fJ urandom_install

j_l urandem_uninstall
{£] urandom_open
{£] urandom_close

1] urandom_read
1] urandom_write
1] urandom_init

1| urandom_random

1] urandom_srandom

urandom_read(buffer, N)
Fill buffer with N bytes from random()

urandom_write(buffer)
(Re)Seed PRNG with first DWORD only from buffer

AFCCB49C
AFCCB4C0
AFCCB4CS
AFCCB4D0
AFCCB4DS8
AFCCB558
AFCCB5A4
AFCCB5F0
AFCCB654

Investigated underlying PRNG

Based on glibc BSD random(3) with custom constants

DESCRIPTION
The functions described in this manual page are not cryptographically

secure. Cryptographic applications should use arc4random(3) instead.

Not a CSPRNG

I LOCAL RESEED ATTACK

* /dev/urandom world-writable: Anyone can force PRNG reseed

[ownerl@: /tmp] $ 1ls -la /dev/urandom
CIW-IW-I'W- 1 root 46,0 Sep 7 02:28 /dev/urandom
[ownerl@: /tmp] $./random write 0x1337
[+] wrote 0x1337 to /dev/urandom!
[ownerl@: /tmp] $./random write 0x1337
[+] wrote 0x1337 to /dev/urandom!
[owner1@: /tmp] $ |}
[root@: /tmp] § ./random read 32
[+] read 32 bytes
[#] [54 EA SE 4E DE 61 CE 6E CA FE 06 59 DC CA 02 0C 26 19 CB 77 88 78 DO 1A 8A CD 2D 01 58 B5 44 1E]
[root@: /tmp] $./random read 32

[+] read 32 bytes
[#] [E7 1F FF 12 98 A3 04 47 6A 7F 43 5B 3D BB 7F 3F 08 7F 21 42 CO 3F D4 48 FA 30 46 79 6C B4 93 42]

‘+] read 32 bytes

"#] [52 2D 1F SF 39 15 08 3E 5D 73 46 OE 9C B1 B5 07 D& 48 7A 0C 8B 42 38 46 2F D8 1C 1E DD 73 93 65]
‘root@: /tmp] $./random read 32

"+] read 32 bytes

“#] [S52 2D 1F SF 39 15 08 3E SD 73 46 OE 9C B1 BS 07 D& 48 7A 0C &B 42 38 46 2F D8 1C 1E DD 73 93 65]
‘root@: /tmp] 5]

Static Initial Seed - srandom(0x.....)

No Reseeding

public urandom_install
urandom_install proc near

push ebp

mov ebp, esp

sub esp, 18h

call urandom_init

mov dword ptr [esp+4], -h

mov dword ptr [esp], O
call urandom_srandom
Xor eax, eax
leave
retn

urandom_install endp

No actual entropy consumed by PRNG

I KNOWN SEED ATTACK

* If we know PRNG seed we know /dev/urandom output consumed
by crypto applications...

L .] AAE R ARG T e F WA VWA WARAA LT AR -
[root@: /tmp] § strace -xe trace=file,read,write,close ssh-keygen -t rsa -b 2048

Process 72.57 attached.
execve ("/bin/ssh-keygen”, ["ssh-keygen", "-t", "rsa", "-b", "2048™], [/* 15 vars */]) = -1346381748
open("/dev/null™, O_RDWR) =3

=0

close(3
open ("/dev/urandom”, O_RDONLY|O NONBLOCK|O NOCITY) = 3

fstat(3, {st_mode=5_IFCHR|0666, st_size=makedev(0, 0), ...}) =10
read (3, "\x52\x2d\x1£\x5f\x39\x15\x08\x3e\x5d\x73\x46\x0e\x9c\xbl"..., 32)

32

open("/etc/passwd”, O_RDONLY) =3
read(3, "root::0:0::/:/bin/bash::::\ndaemo"..., 512) = 512
write(l, "Generating public/private rsa ke"..., 40Generating public/private rsa key pair.

) = 40

Consider target (RSA / DSA)
public key generated on
[REDACTED] OS

We know initial PRNG seed

Brute-Force state offset until
pubkey match

Bounded by number of bytes likely
read (< 23?)

We can even precompute this!

CLONE PRNG %m

B SET_STATE_OFFSET(l)

URANDOM_READ()

(Xpub, Xpriv) = Target public key

GEN_KEYPAIR() Ypub
| I
y
Xpub = Ypub? BACEES Got private key Xpriv!

No

y

KNOWN SEED ATTACK
(NO LIVE DEMO, NDA ®)

.y remote sshd private key recover attack ::..
- Jos Wetzels
[*] Contacting sshd at '192.168.0.107:22'...

[1] Got 'ssh-rsa' key with fingerprint 'bec:cc:0b:cc:1f:5d:cd:32:2b:cl1:91: cf’
[*] Recovering private key...
[*] Cloning with known initial seed 0x , Searching states for match...

[*] Trying state position 0...

[*] Trying state position 1...

[*] Trying state position 2...

[*] Trying state position 3...

[*] Trying state position 4...

[#*] Trying state position 5...

[+] Found matching public keys at state position 5
[+] Recovered private key

MITEowIBAAKCAQEAtowyLTiPnI7O0RQGYkrmA+I1MmJICievsLOvaZlwCofKZgbGued
JbsvbZcC4iXAWIYGQ7Xtm3sS0f1IVWwCTALVerJIcZUSgZIWXoVyUgleWX920s8Vis
k8paQimldnSkqpixGlQO0OXE1l/0s6yVEcVXZmsivDmvHQRFJORUITZUONTQOfENnTF8
CCQccyXhYRybCIxXZv9z0uiTHWEiN9TBhHEbN6AtYexmyRNdRIdglp9rS5IyvJHec]/
XCwRNKoPegUsMUa/xU8eb3LUwhOSWOR20IFhz+D4cX29ZFnyz1PDgvR3U0QZ59vS/
D50xaMIMwPWmOfQyvlU85SNg86 7TTMNmy TmY3GgOwIDAQABAOIBAQCKkVUI1Q8fkMeSST
CALLVKWBNQGhXAnrwgeCdPFc507XalA7kGYvyayRBHpcG/ fnPuul31Xtud4bd8YXm

CASE STUDY: VXWORKS (6.9)

* RTOS, initial release 1987

VxWorks

BURDEN ON DEVELOPER...

* VxWorks provides no OS CSPRNG

/* Add various clock/timer values. These are both very fast clocks/
counters, however the difference over subsequent calls is only
2-3 bits in the LSB */

tickCount = tickGet();

addRandomLong(randomState, tickCount);

status = clock_gettime(CLOCK_REALTIME, &timeSpec);

if(status == 0)

addRandomData(randomState, &timeSpec, sizeof(struct timespec));

(...)

/* Add the current task ID and task options. The task options are
relatively fixed but the task ID seems quite random and over the full
32-bit range */

taskID = taskIdSelf();

addRandomLong(randomState, taskID);

CryptLib

#17 defined(OPENSSL_SYS_VXWORKS)
int RAND_poll(void)

{

return ©;
¥
#endif

OpenSSL

#21:7 defined(WOLFSSL_VXWORKS)
#include <randomNumGen.h>
int wc_GenerateSeed(0S_Seed* os, byte
STATUS status;
#itdet VXWORKS_SIM
int i = 0;
for (1 = @; i < 1000; i++) {
randomAddTimeStamp();
¥

#endif
status = randBytes (output, sz);
if (status == ERROR) {
return RNG_FAILURE_E;
¥

WolfSSL

S
From:
Reply-to: libssh@xxxxxxxxxx

Date: Sun, 4 May 2014 21:06:10 +0300
To: libssh@xxxxxXxXxxxx

Dear Members,
The cause to the problem is the code:
#if defined(OPENSSL_SYS_VXWORKS)
int RAND_poll(void)
{
return @;

#endif
in openssl-@©.9.8e/crypto/rand/rand_unix.c

replaced this code with the code used for OpenBSD:

#if defined(OPENSSL_SYS_VXWORKS)
int RAND_poll(void)

u_int32_t rnd i;
unsigned char NTROPY_NEEDED];

for (i ; i si ()3
if (i % 4 == @)

RAND_add (buf, sizeof(buf), ENTROPY_NEEDED);

memset(buf, @, sizeof(buf));

return 1;

1
g

#endif

ubject: Fwd: ssh_connect fails: Received SSH_MSC

PRNG not seeded problem on PPC604 (vxWorks 5.5)

I am using openSSL 0.9.7b on PPC604 vxWorks Board.
During initilization of OpenSSL with DHparam file, following flow is used:
pDHParamfp /* file pointer to dhparam.pem file */

dh = PEM_read_DHparams(pDHParamfp, sdf_co_null, Sdf_co_null, Sdf_co_null);
..SSL_CTX_set_tmp_dh(pSsiICtx, dh);

from here I am getting the error message "PRNG not seeded".
This function calls the function 'generate_key' of OpenSSL and from here 'BN_rand' returns failure with this error code.

Hi,

When my embedded board (running vxworks) boots, i need to generate a
random seed. Currently the board doesn't have any means like CMOS for
maintaining time. Thus whenever I use gettimeofday() as seed value

for srand(), the resulting rand() number repeats most of the time.

Is there any other way to generate random seed without using any

timing functions? Or any equivalent of /dev/random?

Hi,

Your capture tells me that the public part of the DH handshake generated
by client is invalid (it is equal to 1 when it should be a 1924 bits
long integer). I have no idea how that could happen. It is possible that
the PRNG returns @ and so the g”x ends up being 1.

But this is not consistent with the random cookie locking random. Does
VXWork have a /dev/random or /dev/urandom device ?

VxWorks far from only one
with these problems

Majority embedded OSes
lack CSPRNG

Esp. tiny RTOSes for deeply
embedded systems

SURVEY OF 35 EMBEDDED
OPERATING SYSTEMS

Support
40%

No
Support
60%

Embedded world is harsh

Constraints, Constraints everywhere
Entropy issues are serious

CSPRNG design is not a joke

Secure randomness should be OS service (whenever possible)
Don’t put burden on developers because they will mess up!

More scrutiny required
“just use /dev/urandom” shouldn’t land you in trouble
Too much of embedded security is still Terra Incognita

QUESTIONS?

Looking for more technical details on Embedded security?
Attend our talk at USENIX Enigma 2017

REFERENCES

https://cseweb.ucsd.edu/~swanson/papers/Oakland2013EarlyEntropy.pdf

https://factorable.net/weakkeys12.extended.pdf

https://smartfacts.cr.yp.to/smartfacts-20130916.pdf

https://www.usenix.org/system/files/conference/woot15/woot15-paper-lorente.pdf

http://blog.sec-consult.com/2015/11/house-of-keys-industry-wide-https.html

www.phy.duke.edu/~rgb/General/dieharder.php,

http://csrc.nist.gov/groups/ST/toolkit/rng/documents/SP800-22revla.pdf,

http://csrc.nist.gov/publications/drafts/800-90/sp800-90b second draft.pdf

https://eprint.iacr.org/2013/338.pdf

https://www.schneier.com/academic/yarrow/ , https://www.schneier.com/academic/fortuna/

http://windriver.com/products/vxworks/ ,http://www.qnx.com/products/neutrino-

rtos/neutrino-rtos.html

