Building and Breaking Wireless Security

TECHNISCHE UNIVERSITÄT DARMSTADT

Jiska Classen

Technische Universität Darmstadt Secure Mobile Networking Lab - SEEMOO Department of Computer Science Center for Advanced Security Research Darmstadt - CASED

> Mornewegstr. 32 D-64293 Darmstadt, Germany jclassen@seemoo.tu-darmstadt.de Tel.+49 6151 16-70924, Fax. +49 6151 16-70921 https://seemoo.de/jclassen

> > FG Deutscne Forschungsgemeinschaft

Overview

- (1) Hardware
- (2) Wireless Channels
- (3) Breaking Wireless Security
- (4) Building Wireless Security
- (5) Getting Started

Hardware

Spectrum Analyzer or Oscilloscope

rad1o badge / HackRF

HackRF Blue

- Receiver and transmitter
- 1MHz-6GHz, 20Msps (**rad1o**: 1MHz-4GHz)
- 200€

DVB-T Sticks & rpitx

DVB-T Sticks

• Receiver for 53MHz-2.2GHz, ~2Msps

• 8€

rpitx

- Cheap transmitter for Raspberry Pi (B, B+ and PI2)
- Use GPIO pins + long wire as antenna
- Low frequency signals: 130kHz-750MHz
- 35€

Wireless Channels

The Wireless Channel

- Every receiver has a **different channel** *H*
- *H* represents different **amplitude** and **phase** per frequency
- Channel reciprocity

Amplitude

Phase

Time constraint: speed of light

- Channel impulse response (time domain)
- Channel frequency response (frequency domain)
- Transmitters, receivers, and objects move
 - \rightarrow Frequency offset

Breaking Wireless Security

Network Security

This is where the magic happens ③

Cryptography (Encryption, Signatures, ...)

Waveform

I guess we need this?

Weird stuff but nobody would attack it!!!

Wireless Transmissions

 Everybody within the transmission range can **eavesdrop**

20 years later...

Wireless Transmissions

- Everybody within the transmission range can **eavesdrop**
- Signal sources can be **located** (privacy!)
- Signal reception range can be **enhanced**

Wireless Transmissions

- Everybody within the transmission range can **eavesdrop**
- Signal sources can be **located** (privacy!)
- Signal reception range can be **enhanced**
- Signals can be **injected**

Protocol Reverse Engineering Bus Stop Display

- Capture wireless data with gqrx or baudline
- Find out the modulation scheme, e.g. by analyzing your capture in audacity
- …now we have the bits ☺
- Reverse engineer their meaning
 - \rightarrow Oona did that on 30C3: "My journey into FM-RDS"

NFC Wormholing

- **Assumption**: passport and reader are in close proximity, because wireless transmissions have a **limited range**
- Problem: forwarding requests and replies is possible

• Time constraint: speed of light! $50 ms \cong 14990 km$

Wormholing & Time Traveling

- Signal propagation is limited by speed of light $\ensuremath{\textcircled{\odot}}$
- Wormholing protection: check for round trip time of single bits (distance bounding)
- Problem: early detection of actual bit values in the waveform

Reactive Jamming

- WiFi: CSMA/CA
- Selectively jam other WiFi stations \rightarrow increased contention window
- Use minimal contention window for yourself $\ensuremath{\textcircled{\odot}}$
- Just \$15 WiFi dongle with modified firmware

Friendly Jamming for Confidentiality

 Disable communication of others via jamming

W. Shen, et al. "Ally friendly jamming: How to jam your enemy and maintain your own wireless connectivity at the same time." *S&P 2013.* Tippenhauer, Nils Ole, et al. "On limitations of friendly jamming for confidentiality." *S&P 2013.*

Friendly Jamming for Confidentiality

pseudo-random jamming

•

Friendly Jamming Vulnerability

•

•

Seeing with Wi-Fi

2.4GHz Radar

- Channel measurements contain reflections and other path effects
- Filter out reflections from the static building
- Identify and track humans
- Gesture-based communication through walls
- Single antenna instead of antenna array based on ISAR: motion over time, channel reciprocity

Single, stationary antenna

Hearing with Wi-Fi

Mouth Eavesdropping & Vibrometry

- Track lip movements to hear through walls
- Track loudspeaker movements
- Track Wi-Fi chip vibrations caused by audio on a smartphone

Building Wireless Security

Wireless Physical Layer Security

Let's do the magic here ©

Waveform

Information-Theoretic Security

Confidentiality

- != computational security
- Unlimited computing power does not help attackers
- Information-theoretic security in encryption:
 one-time pad

Wyner's Wiretap Channel

Confidentiality

Information-theoretic security:

- Every receiver has a different channel H
- If H_{AB} is better than H_{AE} , Eve gets less information
- Use Bob's advantage for confidential information

Practical problems!

- *H_{AE}* unknown
- Eve can get more/better antennas

Key Extraction

... Cryptography Basis

- Every receiver has a **different channel** *H*
- Channel reciprocity helps to extract symmetric keys

Typical **implementation** weaknesses:

- Some metrics like received signal strength are not random enough (just 8 bit value & predictable)
- Reproducability for fixed stations

Covert Channels

Information Hiding, Confidentiality

- Noise is normal in wireless signals
- Noise gets compensated in upper layers
- Hide information in wireless noise

Practical problems:

- Ensure no possibility to uncover the covert channel at **upper layers** (e.g. increased frame error rate)
- Statistical inconspiciousness

- sent constellation
- received, noisy constellation

Distance Bounding

Authentication, Authorization

- Signals cannot travel faster than **speed of light**
- Measure round trip time and cryptographically secure it

Device Fingerprinting

Authentication, Authorization

- Identification of single devices
- **Classification** of device types
- Device-specifics per harware vendor (exclude third party devices from a network)

Problem:

 Low-end receiver fingerprints can be faked with software-defined radios

Where to start?

Getting Started

- rad1o assembly
- Get a **ham radio license** ("Amateurfunk-Lizenz") •
- Record signals and **ask** the experts ۲
- **Lectures** etc. offered by SEEMOO / TU Darmstadt ۲
- Maybe your university also offers something \bigcirc The **AkadAFU** people are working on this!

