
A Dozen Years of Shellphish
From DEFCON to the Cyber Grand Challenge

Antonio Bianchi

Jacopo Corbetta

Andrew Dutcher

antoniob@cs.ucsb.edu

jacopo@cs.ucsb.edu

dutcher@cs.ucsb.edu

Chaos Communication Congress / December 29th, 2015

2A Dozen Years of Shellphish – from DEFCON to the Cyber Grand Challenge

Shellphish

● Who are we?
○ A team of security enthusiasts

■ do research in System Security
■ play Capture the Flag competitions
■ released a couple of tools

3A Dozen Years of Shellphish – from DEFCON to the Cyber Grand Challenge

Shellphish
○ Started (in 2004) at:

■ SecLab: University of California, Santa Barbara

4A Dozen Years of Shellphish – from DEFCON to the Cyber Grand Challenge

Shellphish

○ expanded to:
■ Northeastern

University: Boston
■ Eurecom: France
■ ...

19
4

1
1

:-(

17

6A Dozen Years of Shellphish – from DEFCON to the Cyber Grand Challenge

Mini-primer: What’s a CTF

● Security competition:
○ exploit a vulnerable service / website / device
○ reverse a binary
○ …

● Different formats
○ Jeopardy ‒ Attack-Defense
○ Online ‒ Live
○ ...

● Basic idea: find the secret, submit to organizers, ... profit

7A Dozen Years of Shellphish – from DEFCON to the Cyber Grand Challenge

Shellphish

8A Dozen Years of Shellphish – from DEFCON to the Cyber Grand Challenge

Shellphish

○ We do not only play CTFs
○ We also organize them!

■ UCSB iCTF
● Attack-Defense format
● every year, since 2002!

■ Try to innovate with a different style every year
● Site: ictf.cs.ucsb.edu
● Base: github.com/ucsb-seclab/ictf-framework
● Vigna, et al., "Ten years of ictf: The good, the bad,

and the ugly." 3GSE, 2014.

http://ictf.cs.ucsb.edu
https://github.com/ucsb-seclab/ictf-framework

9A Dozen Years of Shellphish – from DEFCON to the Cyber Grand Challenge

Why we’re here

12A Dozen Years of Shellphish – from DEFCON to the Cyber Grand Challenge

Why we’re here

● DARPA Cyber Grand Challenge (CGC)
The (almost-)Million Dollar Baby

● Our Cyber Reasoning System (CRS)
Fancy term for auto-playing a CTF

● Automated Vulnerability Discovery
● Live example using angr

Open-source binary analysis framework

● Towards the Cyber Grand Challenge Finals (CFE)

13A Dozen Years of Shellphish – from DEFCON to the Cyber Grand Challenge

Cyber Grand Challenge (CGC)
● 2004: DARPA Grand Challenge

○ Autonomous vehicles

14A Dozen Years of Shellphish – from DEFCON to the Cyber Grand Challenge

Cyber Grand Challenge (CGC)
● 2014: DARPA Cyber Grand Challenge

○ Autonomous hacking!

15A Dozen Years of Shellphish – from DEFCON to the Cyber Grand Challenge

Cyber Grand Challenge (CGC)

● Started in 2014

● Qualification event: June 3rd, 2015, online
○ ~70 teams → 7 qualified teams

● Final event: August 4th, 2016 @ DEFCON (Las Vegas)
○ Winning CRS will also play against humans!

cybergrandchallenge.com / cgc.darpa.mil

16A Dozen Years of Shellphish – from DEFCON to the Cyber Grand Challenge

CGC Rules

● Attack-Defense CTF
● Solving security challenges → Developing a system that

solves security challenges

● Develop a system that automatically
○ Exploit vulnerabilities in binaries
○ Patch binaries, removing the vulnerabilities

● No human intervention

● Think it’s trivial? How would you play?
○ And how would you organize it?

17A Dozen Years of Shellphish – from DEFCON to the Cyber Grand Challenge

CGC ‒ Rules

● Exploits
○ “getting a flag” (how? where?)
○ For the quals: exploit = crash

● Defend
○ int main() { return 0; }

■ Functionality checks
○ SIGSEGV => exit(0)

■ No easy “out-of-band” error handling
○ QEMU-style interpreter: interrupts => exit(0)

■ Performance cost (CPU, memory, file size)

18A Dozen Years of Shellphish – from DEFCON to the Cyber Grand Challenge

CGC Qualification Event ‒ Rules

● Basic idea:
○ Real(istic) programs
○ No “extra” complications

■ Is modeling the entire POSIX API a good use of
team resources? What about the file systems? Or
horrible things like interruptible syscalls?

19A Dozen Years of Shellphish – from DEFCON to the Cyber Grand Challenge

CGC Qualification Event ‒ Rules

● Architecture: Intel x86, 32-bit

● OS: DECREE
○ Linux-like, but with 7 syscalls only

■ transmit / receive / fdwait (≈ select)
■ allocate / deallocate (even executable!)
■ random
■ _terminate

○ no signals, threads, shared memory

● “Bring Your Own Defense” approach (and pay for it)
○ Not even “the usual”: stack is executable, no ASLR, …

20A Dozen Years of Shellphish – from DEFCON to the Cyber Grand Challenge

Coming up:

● DARPA Cyber Grand Challenge (CGC)
The (almost-)Million Dollar Baby

● Our Cyber Reasoning System (CRS)
Fancy term for auto-playing a CTF

● Automated Vulnerability Discovery
● Live example using angr

Open-source binary analysis framework

● Towards the Cyber Grand Challenge Finals (CFE)

21A Dozen Years of Shellphish – from DEFCON to the Cyber Grand Challenge

Shellphish CRS

vulnerable
binary

patched binary

exploit

Cyber
Reasoning

System

22A Dozen Years of Shellphish – from DEFCON to the Cyber Grand Challenge

Shellphish CRS

vulnerable
binary

proposed
patches

proposed
exploits

Shellphish CRS

Automatic
Testing

exploit

patched
binary

Automatic
Patching

Automatic
Vulnerability

Finding

Automatic
Vulnerability

Finding

23A Dozen Years of Shellphish – from DEFCON to the Cyber Grand Challenge

Why we’re here

● DARPA Cyber Grand Challenge (CGC)
The (almost-)Million Dollar Baby

● Our Cyber Reasoning System (CRS)
Fancy term for auto-playing a CTF

● Automated Vulnerability Discovery
● Live example using angr

Open-source binary analysis framework

● Towards the Cyber Grand Challenge Finals (CFE)

24A Dozen Years of Shellphish – from DEFCON to the Cyber Grand Challenge

Automatic Vulnerability Discovery

“How do I crash a binary?”

“How do I reach state X in a binary?”

Dynamic Analysis/Fuzzing Symbolic Execution

25A Dozen Years of Shellphish – from DEFCON to the Cyber Grand Challenge

Dynamic Analysis/Fuzzing
● How do I reach the state: “You win!” is printed?

x = int(input())
if x >= 10:

if x < 100:
print "You win!"

else:
print "You lose!"

else:
print "You lose!"

26A Dozen Years of Shellphish – from DEFCON to the Cyber Grand Challenge

Dynamic Analysis/Fuzzing
● How do I reach the state: “You win!” is printed?

x = int(input())
if x >= 10:

if x < 100:
print "You win!"

else:
print "You lose!"

else:
print "You lose!"

● Try “1” → “You lose!”

● Try “2” → “You lose!”

● …

● Try “10” → “You win!”

27A Dozen Years of Shellphish – from DEFCON to the Cyber Grand Challenge

Dynamic Analysis/Fuzzing

● How did we use Fuzzing for CGC?

● Coverage-guided fuzzing
○ Looking for “crashing inputs”
○ Based on AFL lcamtuf.coredump.cx/afl/

● In general, it cannot work in some cases
○ e.g., “magic numbers”, computations, ...

http://lcamtuf.coredump.cx/afl/

28A Dozen Years of Shellphish – from DEFCON to the Cyber Grand Challenge

Dynamic Analysis/Fuzzing
● How do I reach the state: “You win!” is printed?

x = int(input())
if x >= 10:

if x^2 == 152399025:
print "You win!"

else:
print "You lose!"

else:
print "You lose!"

29A Dozen Years of Shellphish – from DEFCON to the Cyber Grand Challenge

Symbolic Execution
● Interpret the binary code and replace user-input with

symbolic variables

x = int(input())
if x >= 10:

if x < 100:
print "You win!"

else:
print "You lose!"

else:
print "You lose!"

State A

Variables
x = ???

Constraints
{}

30A Dozen Years of Shellphish – from DEFCON to the Cyber Grand Challenge

Symbolic Execution
● Interpret the binary code and replace user-input with

symbolic variables

x = int(input())
if x >= 10:

if x < 100:
print "You win!"

else:
print "You lose!"

else:
print "You lose!"

State A

Variables
x = ???

Constraints
{}

31A Dozen Years of Shellphish – from DEFCON to the Cyber Grand Challenge

Symbolic Execution

State A

Variables
x = ???

Constraints
{}

State AA

Variables
x = ???

Constraints
{x >= 10}

● Follow all feasible paths, tracking "constraints" on
variables

x = int(input())
if x >= 10:

if x < 100:
print "You win!"

else:
print "You lose!"

else:
print "You lose!"

32A Dozen Years of Shellphish – from DEFCON to the Cyber Grand Challenge

State AB

Variables
x = ???

Constraints
{x < 10}

Symbolic Execution

State A

Variables
x = ???

Constraints
{}

State AA

Variables
x = ???

Constraints
{x >= 10}

● Follow all feasible paths, tracking "constraints" on
variables

x = int(input())
if x >= 10:

if x < 100:
print "You win!"

else:
print "You lose!"

else:
print "You lose!"

33A Dozen Years of Shellphish – from DEFCON to the Cyber Grand Challenge

Symbolic Execution

x = int(input())
if x >= 10:

if x < 100:
print "You win!"

else:
print "You lose!"

else:
print "You lose!"

State AA

Variables
x = ???

Constraints
{x >= 10}

State AB

Variables
x = ???

Constraints
{x < 10}

● Follow all feasible paths, tracking "constraints" on
variables

34A Dozen Years of Shellphish – from DEFCON to the Cyber Grand Challenge

Symbolic Execution

x = int(input())
if x >= 10:

if x < 100:
print "You win!"

else:
print "You lose!"

else:
print "You lose!"

State AA

Variables
x = ???

Constraints
{x >= 10}

● Follow all feasible paths, tracking "constraints" on
variables

35A Dozen Years of Shellphish – from DEFCON to the Cyber Grand Challenge

Symbolic Execution

x = int(input())
if x >= 10:

if x < 100:
print "You win!"

else:
print "You lose!"

else:
print "You lose!"

State AA

Variables
x = ???

Constraints
{x >= 10}

State AAA

Variables
x = ???

Constraints
{x >= 10, x < 100}

State AAB

Variables
x = ???

Constraints
{x >= 10, x >= 100}

● Follow all feasible paths, tracking "constraints" on
variables

36A Dozen Years of Shellphish – from DEFCON to the Cyber Grand Challenge

Symbolic Execution

x = int(input())
if x >= 10:

if x < 100:
print "You win!"

else:
print "You lose!"

else:
print "You lose!"

State AAA

Variables
x = ???

Constraints
{x >= 10, x < 100}

State AAA

Variables
x = 99

Concretization

● Concretize the constraints on the symbolic variables

37A Dozen Years of Shellphish – from DEFCON to the Cyber Grand Challenge

Symbolic Execution

x = int(input())
if x >= 10:

if x^2 == 152399025:
print "You win!"

else:
print "You lose!"

else:
print "You lose!"

State AAA

Variables
x = ???

Constraints
{x >= 10,

x^2 == 152399025}

State AAA

Variables
x = 12345

Concretization

● Concretize the constraints on the symbolic variables

38A Dozen Years of Shellphish – from DEFCON to the Cyber Grand Challenge

Symbolic Execution
● How did we use Symbolic Execution for CGC?

○ We used the symbolic execution engine of angr,
the binary analysis platform developed at UCSB

● Symbolically execute the binaries looking for
1. Memory accesses outside allocated regions
2. “Unconstrained” instruction pointer

(e.g., controlled by user input)
■ eax = <user input>, jmp eax

● If either 1. or 2. is true
 → we found an input that will make the program crash

39A Dozen Years of Shellphish – from DEFCON to the Cyber Grand Challenge

Future directions

● Combining the two approaches

● “Driller: Augmenting Fuzzing Through Selective
Symbolic Execution”
○ Network and Distributed System Security

Symposium (NDSS), February 2016, San Diego

40A Dozen Years of Shellphish – from DEFCON to the Cyber Grand Challenge

Future directions
● “Driller: Augmenting Fuzzing Through Selective

Symbolic Execution”

FUZZING

BINARIES SYMBOLIC
EXECUTION

DRILLER

41A Dozen Years of Shellphish – from DEFCON to the Cyber Grand Challenge

Coming up:

● DARPA Cyber Grand Challenge (CGC)
The (almost-)Million Dollar Baby

● Our Cyber Reasoning System (CRS)
Fancy term for auto-playing a CTF

● Automated Vulnerability Discovery
● Live example using angr

Open-source binary analysis framework

● Towards the Cyber Grand Challenge Finals (CFE)

42A Dozen Years of Shellphish – from DEFCON to the Cyber Grand Challenge

angr

● Binary analysis platform, developed at UCSB

● Open source: github.com/angr (star it!)

● Architecture independent
○ x86 (ELF, CGC, PE), amd64, mips, mips64, arm,

aarch64, ppc, ppc64

https://github.com/angr

43A Dozen Years of Shellphish – from DEFCON to the Cyber Grand Challenge

angr

● Written in Python!
○ installable with one (two?) command!

■ mkvirtualenv angr
■ pip install angr

○ interactive shell (using IPython)

○ it has an interactive GUI

(optional, but don’t complain if it’s broken)

44A Dozen Years of Shellphish – from DEFCON to the Cyber Grand Challenge

angr ‒ Demonstration
Grub: “Back to 28” vulnerability

○ Pressing backspace 28 times on the grub username
prompt can get you a rescue shell

○ http://hmarco.org/bugs/CVE-2015-8370-Grub2-
authentication-bypass.html

http://hmarco.org/bugs/CVE-2015-8370-Grub2-authentication-bypass.html
http://hmarco.org/bugs/CVE-2015-8370-Grub2-authentication-bypass.html
http://hmarco.org/bugs/CVE-2015-8370-Grub2-authentication-bypass.html

45A Dozen Years of Shellphish – from DEFCON to the Cyber Grand Challenge

angr ‒ Demonstration
Grub: “Back to 28” vulnerability

buf

cur_len:-28

buf-28

get_username
stack frame

return address

caller function
stack frame

username buffer
...

function arguments

46A Dozen Years of Shellphish – from DEFCON to the Cyber Grand Challenge

angr ‒ Demonstration
Grub: “Back to 28” vulnerability

buf

cur_len:-28

buf-28

grub_memset

get_username
stack frame

00 00 00 00
00 00 00 00
00 00 00 00
00 00 00 00
00 00 00 00
00 00 00 00
00 00 00 00
00 00 00 00

...

get_username
stack frame

return address

caller function
stack frame

username buffer
...

function arguments

47A Dozen Years of Shellphish – from DEFCON to the Cyber Grand Challenge

angr ‒ Demonstration

????????

Grub: “Back to 28” vulnerability

● Somehow, jumping to
00:0000 is completely
exploitable

● Way beyond the scope
of this demo

48A Dozen Years of Shellphish – from DEFCON to the Cyber Grand Challenge

angr ‒ Demonstration
Grub: “Back to 28” vulnerability

● The correct path to the exploit goes around this
loop 28 times, each of which has to follow a
specific path

● The universe will grow old and die before naive
symbolic execution finds this bug

● Demonstration: this doesn’t work, really!
● A technique (implemented by angr) called

veritesting1 solves this problem in some cases by
merging states when their instruction pointers
converge, but in this case the complexity
generated is too much for the constraint solver

1http://users.ece.cmu.edu/~aavgerin/papers/veritesting-icse-2014.pdf

http://users.ece.cmu.edu/~aavgerin/papers/veritesting-icse-2014.pdf

49A Dozen Years of Shellphish – from DEFCON to the Cyber Grand Challenge

angr ‒ Demonstration

● Symbolic execution is powerful
● Symbolic execution is stupid

● You are incredibly weak
● You are very clever

Use angr to unlock your true potential

50A Dozen Years of Shellphish – from DEFCON to the Cyber Grand Challenge

angr ‒ Demonstration
Grub: “Back to 28” vulnerability

Manual examination of the state explosion tells you:
● Where the wasted computational power is going
● How to be more efficient

The naive approach is doing lots of weird things like entering letters and then deleting
them again and again, or pressing the “home” key several times in a row, which don’t
produce any interesting new states to analyze.

You can fix this!

51A Dozen Years of Shellphish – from DEFCON to the Cyber Grand Challenge

angr ‒ Demonstration
Grub: “Back to 28” vulnerability

Final demonstration
Finding the bug

52A Dozen Years of Shellphish – from DEFCON to the Cyber Grand Challenge

Coming up:

● DARPA Cyber Grand Challenge (CGC)
The (almost-)Million Dollar Baby

● Our Cyber Reasoning System (CRS)
Fancy term for auto-playing a CTF

● Automated Vulnerability Discovery
● Live example using angr

Open-source binary analysis framework

● Towards the Cyber Grand Challenge Finals (CFE)

53A Dozen Years of Shellphish – from DEFCON to the Cyber Grand Challenge

● 7 teams passed the qualification phase

● Shellphish is one of them! :-)

● We exploited 44 binaries out of 131

● Every qualified team received $ 750,000 !

CGC Quals ‒ Results

54A Dozen Years of Shellphish – from DEFCON to the Cyber Grand Challenge

CGC Finals

● Different setup
○ Round-based attack-defense CTF
○ Probably, zero human intervention allowed

■ Not even bug fixing?
○ Data about previous rounds is available:

■ submitted exploits/patched binaries performance
■ (anonymized) network traffic
■ patches from other teams

○ Stealing patched binaries/exploits?

55A Dozen Years of Shellphish – from DEFCON to the Cyber Grand Challenge

CGC Finals

● Exploits are more realistic:
○ Two types:

■ Crash at a specific location and set a specific
register to a specific value

■ Leak data from a specific memory page
○ We’ll need a more realistic exploit generator:

■ angr automatic ROP-chain builder!
● Every team can also deploy network-level filtering rules

56A Dozen Years of Shellphish – from DEFCON to the Cyber Grand Challenge

CGC Finals

● Every team has access to a
cluster of:
○ 1280 cores
○ 16 TB of RAM
○ 128 TB of storage

57A Dozen Years of Shellphish – from DEFCON to the Cyber Grand Challenge

CGC Finals

58A Dozen Years of Shellphish – from DEFCON to the Cyber Grand Challenge

CGC Finals

59A Dozen Years of Shellphish – from DEFCON to the Cyber Grand Challenge

CGC Finals

● Finals will take place on August 2016
○ DEFCON, Las Vegas

● Money prices!
○ First place: $ 2’000’000
○ Second place: $ 1’000’000
○ Third place: $ 750’000

● The winning team will compete against human teams at
DEFCON CTF Finals :-)

60A Dozen Years of Shellphish – from DEFCON to the Cyber Grand Challenge

Shellphish CGC Team

61A Dozen Years of Shellphish – from DEFCON to the Cyber Grand Challenge

I want more...
● angr hands-on workshop

○ Just after this talk
○ Hall 13 (first floor)
○ Bring your laptop!

62A Dozen Years of Shellphish – from DEFCON to the Cyber Grand Challenge

“That’s all folks!”

 Questions?

References:
CGC: cybergrandchallenge.org ‒ cgc.darpa.mil
DARPA CGC presentation (DEFCON 2015): youtu.be/gnyCbU7jGYA
angr: angr.io ‒ github.com/angr
emails: antoniob@cs.ucsb.edu ‒ jacopo@cs.ucsb.edu ‒ dutcher@cs.ucsb.edu

http://cybergrandchallenge.org
http://cgc.darpa.mil
https://youtu.be/gnyCbU7jGYA
http://angr.io
https://github.com/angr/angr
mailto:antoniob@cs.ucsb.edu
mailto:jacopo@cs.ucsb.edu
mailto:dutcher@cs.ucsb.edu

