Dissecting VoLTE: Exploiting Free Data Channels and Security Problems

Hongil Kim, Dongkwan Kim @ SysSec Lab. 32C3

Credits:

Minhee Kwon, Hyeongseok Han, Yeongjin Jang, Taesoo Kim, Dongsu Han, Yongdae Kim

KIM, HONG IL

Ph.D. student at System Security Lab. KAIST

Research interest:

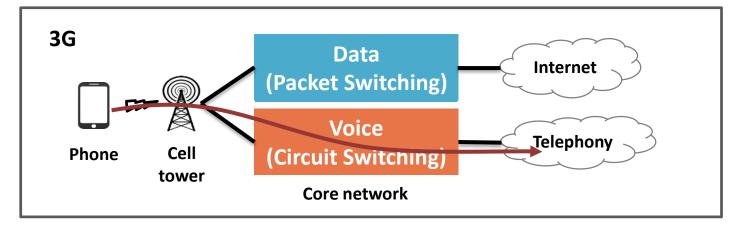
- Cellular network system
- Mobile device security
- Internet of Things (IoT) security

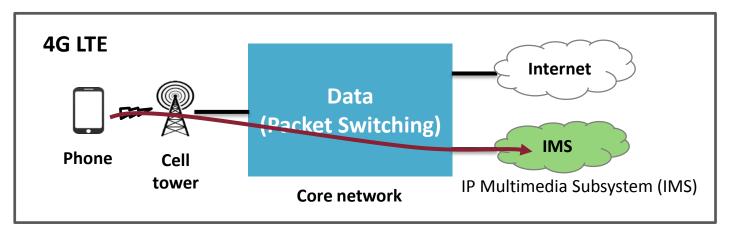
KIM, DONG KWAN

M.S. student at System Security Lab. KAIST

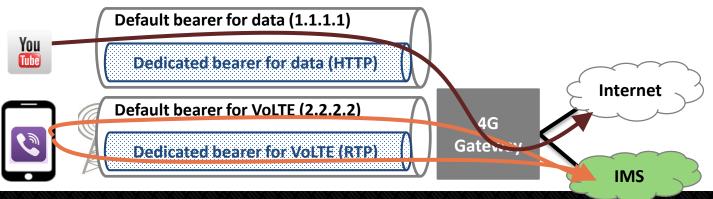
Research interest:

- Cellular Security
- CPS Security
- System Security


VoLTE = Voice over LTE


- Implementation of VoIP on LTE
- ✤ 3G network
 - Data and voice are separated
- ✤ 4G LTE network : All-IP based Network
 - Both data and voice are delivered as data-flow

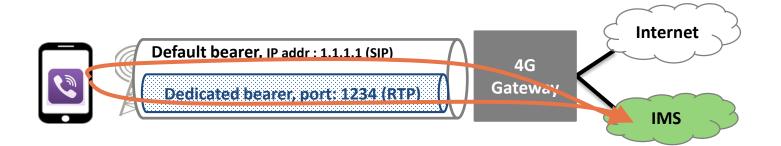
- Advantages on VoLTE
 - **For users**: high voice quality, faster call setup, better battery life.
 - For operators: increase usability, reduce cost, rich multimedia services



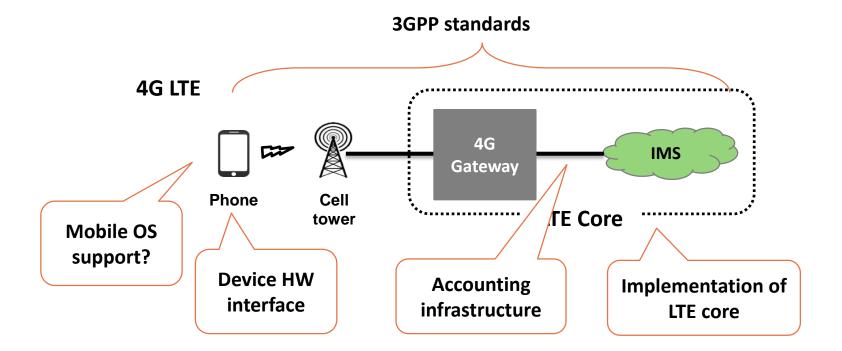
Each service is delivered by bearer

- In LTE, all services are delivered data channels, called "bearers"
 - Data, Voice, Video, ...
- ✤ Bearer: a virtual channel with below properties
 - Based on **QCI*** value, it determines bandwidth, loss rate, latency (QoS)
 - Default bearer: Non Guaranteed Bit rate
 - Dedicated bearer: Guaranteed Bit rate

5

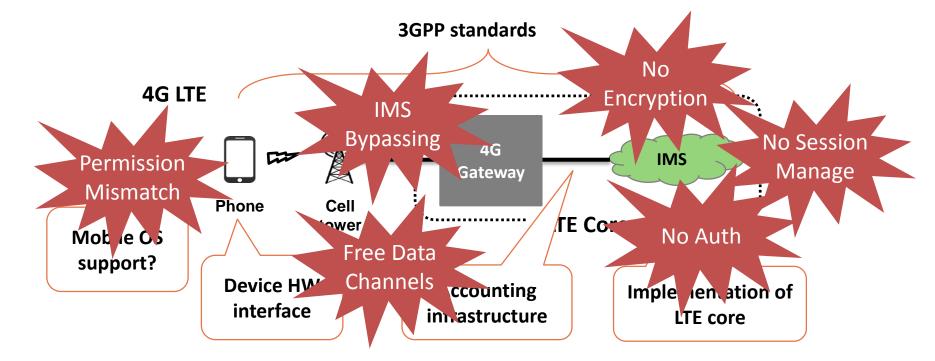

Each service is delivered by bearer

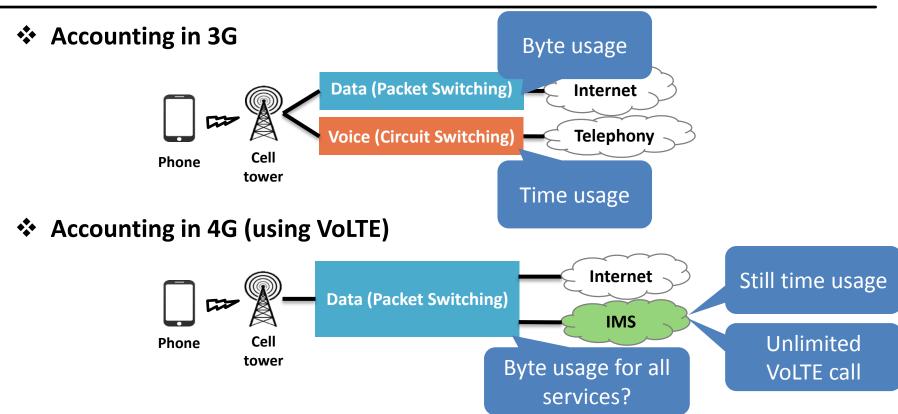
*	QCI	Bearer Type	Priority	Packet Delay	Packet Loss	Usage	
	1		2	100 ms	10 ⁻²	Voice data (VoLTE)	
*4	2	Gauranteed Bit	4	150 ms	10 ⁻³	Video data	
	3	rate	3	50 ms		Real-time gaming	
	4		5	300 ms		Buffered streaming	
	5		1	100 ms	10 ⁻⁶	IMS signaling (VoLTE signaling)	
	6		6	300 ms		Buffered streaming, TCP based services	
	7	Non Gauranteed Bit rate	7	100 ms	10 ⁻³	Live streaming, Interactive Gaming	
	8		8	300 ms	10 ⁻⁶	TCP based services e.g.	
	9		9	500 ms	10	email, ftp, chat etc.	


Voice delivery in LTE

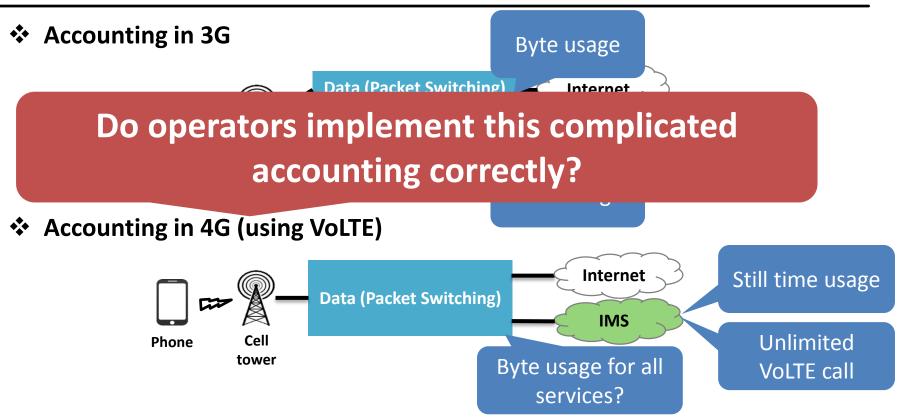
- Voice is delivered through two bearers
- For VoLTE service,
 - 1. Default bearer: call signaling (control-plane), *SIP
 - 2. Dedicated bearer: voice data (data-plane), *RTP

VoLTE makes cellular network more complex

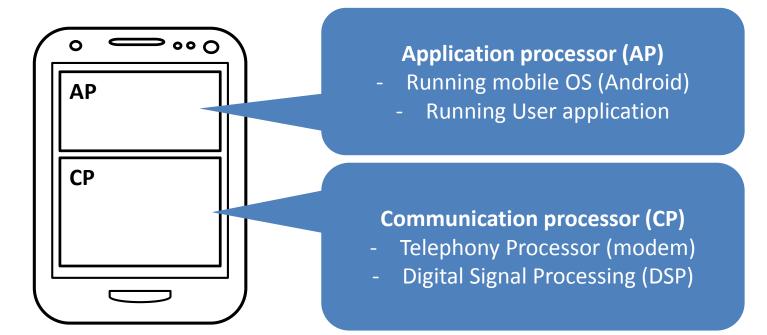

Let's check potential attack vectors newly introduced in VoLTE

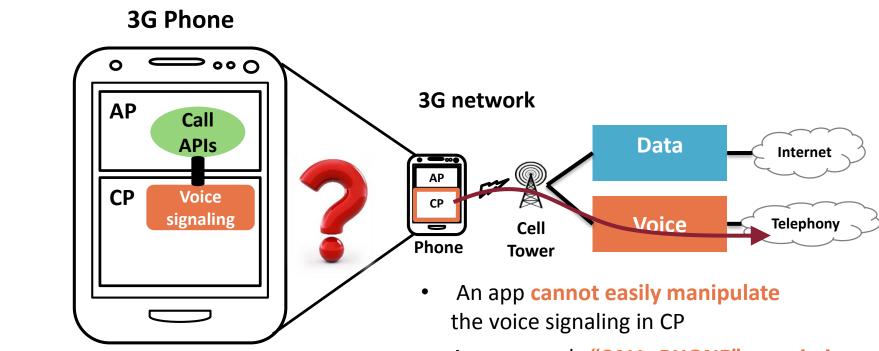

VoLTE makes cellular network more complex

✤ Let's check potential attack vectors newly introduced in VoLTE

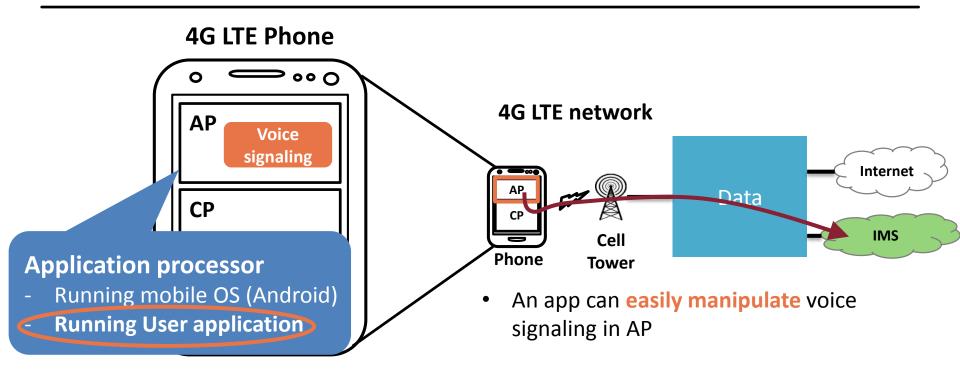


#1: VoLTE Accounting

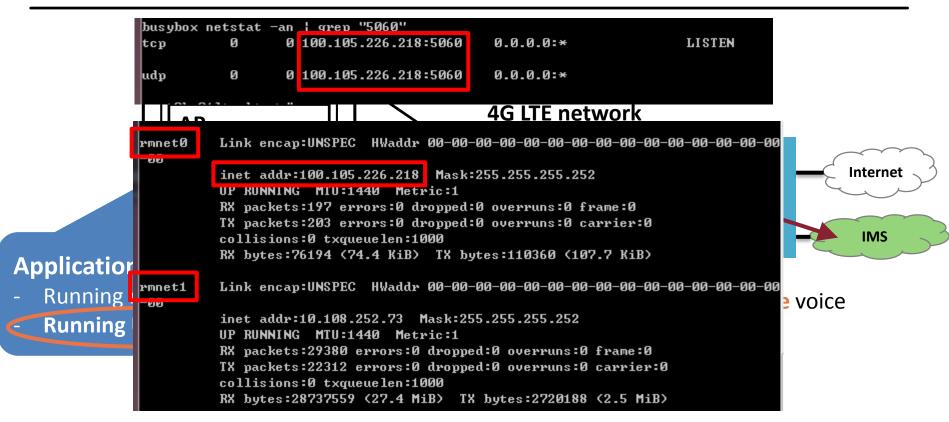

#1: VoLTE Accounting


Anatomy of smartphone

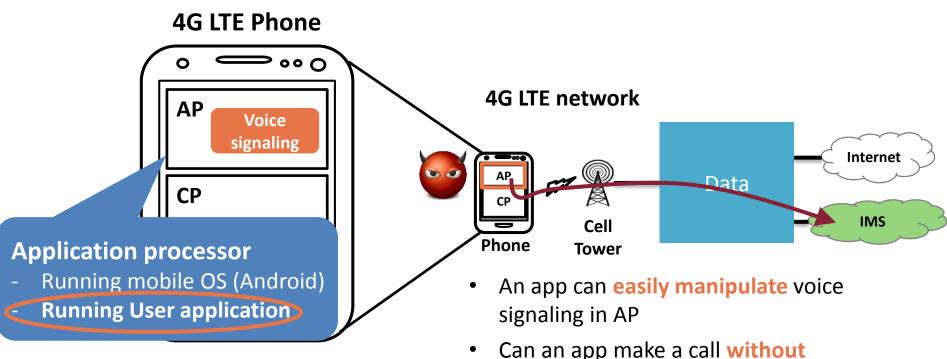
Smartphone has two processors


#2 Voice solution in device, 3G case

 An app needs "CALL_PHONE" permission for calling



#2: Voice solution in device, LTE



#2: Voice solution in device, LTE

#2: Voice solution in device, LTE

"CALL_PHONE" permission?

Two findings in VoLTE

1. A complex accounting infrastructure

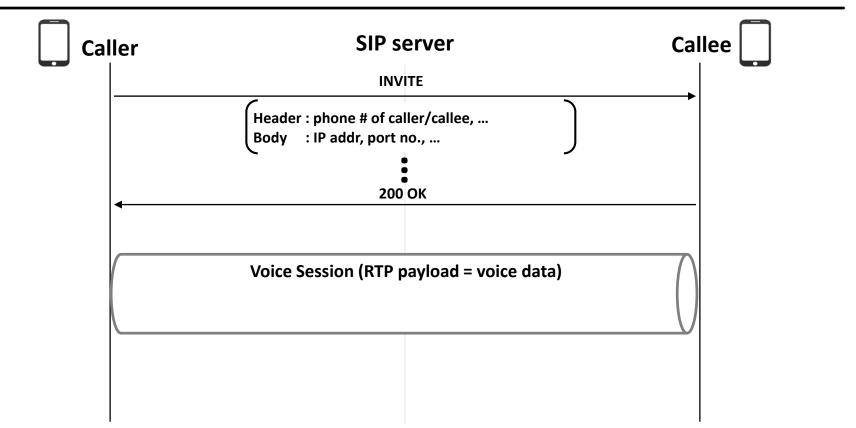
2. Delegating voice signaling (previously done by CP) to AP

Our approach to attack two findings

- Analyze 3GPP standards related with VoLTE service
 - Leave detail implementation to operators, chipset vendors, ...
- Make a checklist of potential vulnerable points in the VoLTE feature
 - About 60 items for both control and data plane
- Perform an analysis in 5 major operational networks
 - 2 U.S. operators and 3 South Korea operators

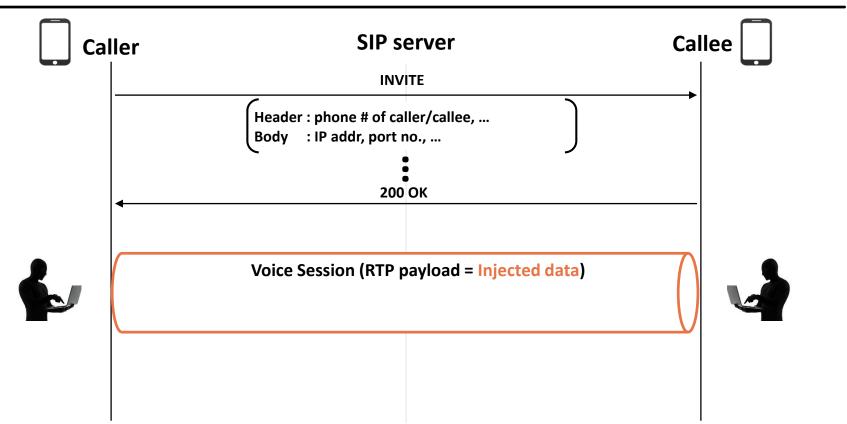
Quick summary of results

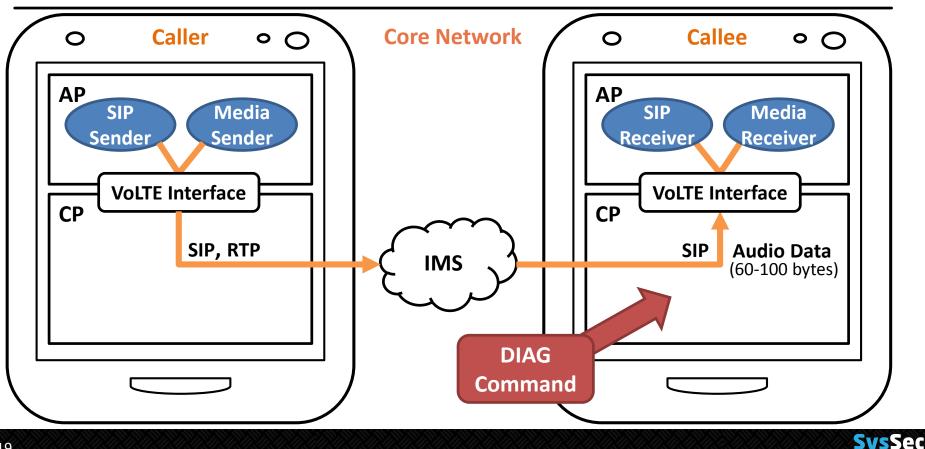
Four free data channels


- Using VoLTE protocol (for all operators)
 - SIP tunneling
 - Media tunneling
- Direct communication (for some operators)
 - Phone-to-Internet
 - Phone-to-Phone

Five security issues

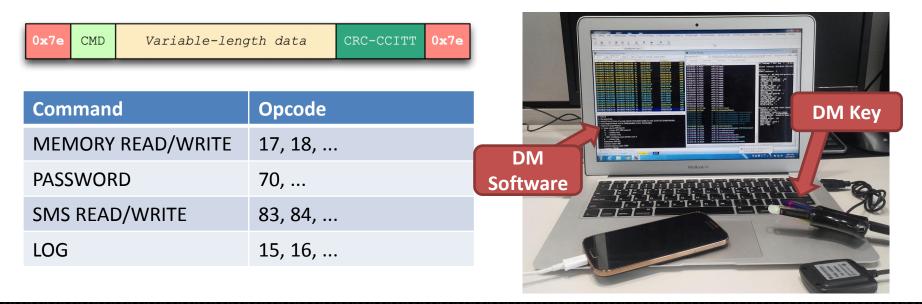
- No encryption of voice packets
- No authentication of signaling
- No call session management (DoS on the cellular infrastructure)
- IMS bypassing
- **Permission model mismatch** (VoLTE call without "CALL_PHONE" permission)


VoLTE Call Procedure


Free Channel: SIP Tunneling

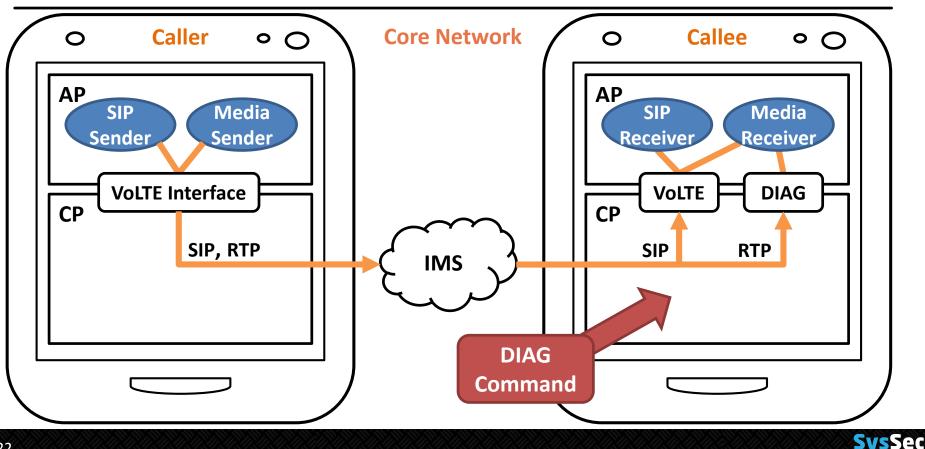
Free Channel: Media Tunneling

Attack Implementation in Detail



System Security Lal

19


Diagnostic Protocol (DIAG)

- Proprietary protocol by QualComm
- Several functions (memory read/write, SMS read/write, signaling dump, ...)
- Real-time data logging for RF diagnosis (Diagnostic Monitor)

* Delugre, "Reverse Engineering a Qualcomm Baseband", 28C3

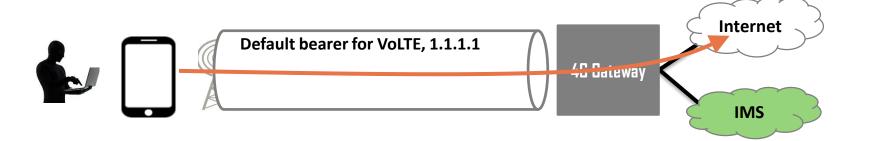
Attack Implementation in Detail

System Security Lal

Outline

Four free data channels

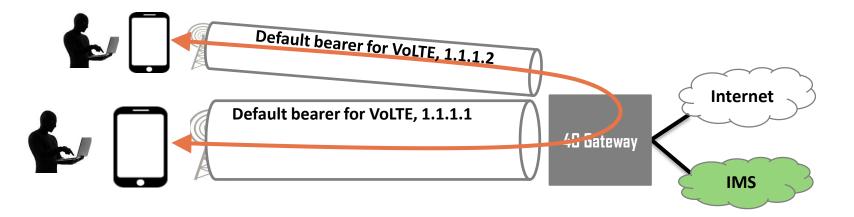
- Using VoLTE protocol (for all operators)
 - SIP tunneling
 - Media tunneling
- Direct communication (for some operators)
 - Phone-to-Internet
 - Phone-to-Phone


Five security issues

- No encryption of voice packets
- No authentication of signaling
- No call session management (DoS on the cellular infrastructure)
- IMS bypassing
- Permission model mismatch (VoLTE call without "CALL_PHONE" permission)

Free Channel: Direct communication

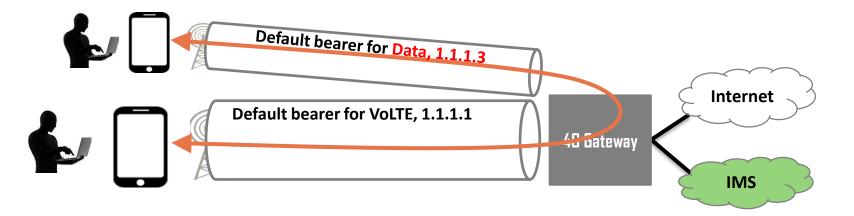
- Phone-to-Internet
 - Open a TCP/UDP socket with voice IP
 - Send data to the Internet
 - E.g. TCP/UDP Socket (Src: voice IP/port, Dst: youtube.com/port)



Free Channel: Direct communication

Phone-to-Phone

- Open a TCP/UDP socket with voice IP
- Send data to callee
- E.g. TCP/UDP Socket (Src: voice IP/port, Dst: callee's voice IP/port)



Overbilling with Direct Communication?

Phone-to-Phone

- Open a TCP/UDP socket with voice IP
- Send data to callee
- E.g. TCP/UDP Socket (Src: voice IP/port, Dst: callee's data IP/port)

Li et al. , Insecurity of Voice Solution VoLTE in LTE Mobile Networks, CCS'15

Evaluation Result: Accounting Bypass

	Free Channel	US-1	US-2	KR-1	KR-2	KR-3
Using VoLTE	SIP Tunneling	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Protocol	Media Tunneling	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Direct	Phone to Phone	\checkmark	x	\checkmark	×	X
Communication	Phone to Internet	x	\checkmark	\checkmark	×	IPv4:√ IPv6:X

Last update: 20th April, 2015

Evaluation Result: Accounting Bypass

	Free Channel	US-1	US-2	KR-1	KR-2	KR-3
Using VoLTE	SIP Tunneling	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Protocol	Media Tunneling	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Direct	Phone to Phone	\checkmark	x	x	x	x
Communication	Phone to Internet	x	\checkmark	x	×	IPv4:√ IPv6:X

Last update: 30th Nov., 2015

Evaluation Result: Accounting Bypass

	Free Channel	US-1	US-2	KR-1	KR-2	KR-3	
Using VoLTE	SIP Tunneling			х			
Protocol	Media Tunneling	dia Tunneling 42 Kbps					
Direct	Phone to Phone		16	5.8 Mbj	ps		
Communication	Phone to Internet		21	L.5 Mbj	ps		

Last update: 20th April, 2015

Outline

Four free data channels

- Using VoLTE protocol (for all operators)
 - SIP tunneling
 - Media tunneling
- Direct communication (for some operators)
 - Phone-to-Internet
 - Phone-to-Phone

Five security issues

- No encryption of voice packets
- No authentication of signaling
- No call session management (DoS on the cellular infrastructure)
- IMS bypassing
- Permission model mismatch (VoLTE call without "CALL_PHONE" permission)

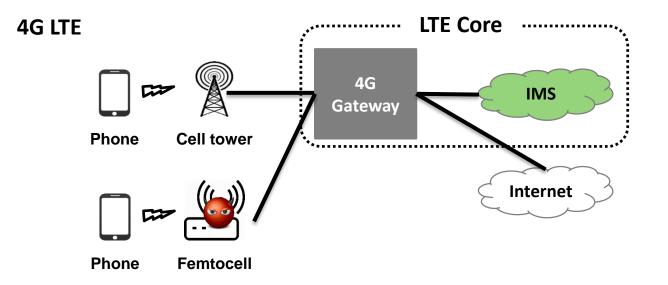
No Encryption for Voice Packets

- For voice signaling,
 - only one operator was using IPsec
 - An attacker can easily manipulate VoLTE call flow
- For voice data,
 - no one encrypted voice data
 - An attacker might wiretap the outgoing voice data

Weak Point	Vulnerability	US-1	US-2	KR-1	KR-2	KR-3	Possible Attack
INAC	No SIP Encryption	0		0	0	0	Message manipulation
IMS	No Voice Data Encryption	0	0	0	0	0	Wiretapping

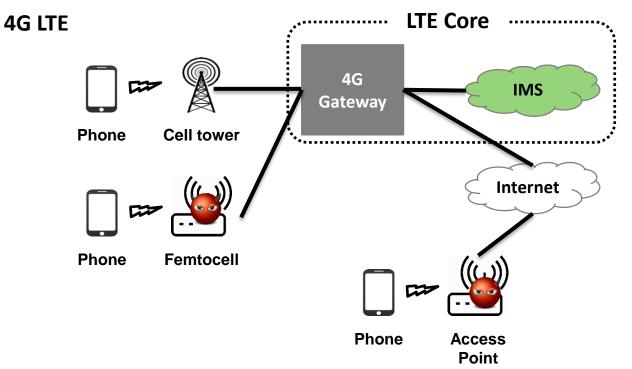
👓 : Vulnerable

: Secure


No Encryption for Voice Packets

F	ilter:			Expression	Clear Apply Save
No.	Time	Source	Destination	Protocol	Length Info
	1 0.000000		Redacted	41::8 IPv6	1512 IPv6 fragment (nxt=UDP (17) off=0 id=0x8b52adc)
	2 0.000347			41::8 ESP	664 ESP (SPI=0x494e5649)
	3 0.150731			3e1a:::ICMPv6	1296 Destination Unreachable (Administratively prohibited
	4 14.045185			41::8 IPv6	1512 IPv6 fragment (nxt=UDP (17) off=0 id=0x8b52add)
	5 14.045828			41::8 ESP	526 ESP (SPI=0x494e5649)
	6 14.193445			3e1a:::ICMPv6	1296 Destination Unreachable (Administratively prohibited
	7 62.966253			41::8 IPv6	1512 IPv6 fragment (nxt=UDP (17) off=0 id=0x8b52ade)
	8 62.966645			41::8 ESP	526 ESP (SPI=0x494e5649)
	9 63.121621			3e1a:::ICMPv6	1296 Destination Unreachable (Administratively prohibited

	US-1	US-2	KR-1	KR-2	KR-3
Network protocol	IPv6	IPv6 + IPsec	IPv4	IPv4	IPv6
Transport protocol for SIP	TCP & UDP	TCP & UDP	UDP	UDP	UDP
Encryption algorithm for IPsec	-	AES	-	-	-


Is Wiretapping Possible?

Wiretapping Is Possible!

***** Even some operators are providing Wi-Fi calling without encryption!

No Encryption for Voice Packets

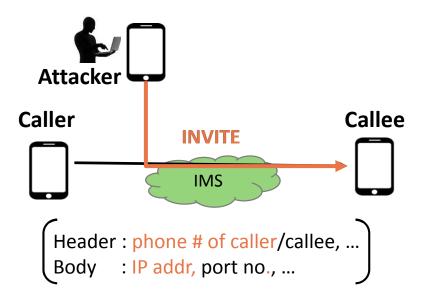
- For voice signaling,
 - only one operator was using IPsec
 - An attacker can easily manipulate VoLTE call flow
- For voice data,
 - no one encrypted voice data
 - An attacker might wiretap the outgoing voice data

Weak Point	Vulnerability	US-1	US-2	KR-1	KR-2	KR-3	Possible Attack
INAC	No SIP Encryption	0		0	0	0	Message manipulation
IMS	No Voice Data Encryption	0	0	0	0	6	Wiretapping

👓 : Vulnerable

: Secure

No Authentication/Session Management

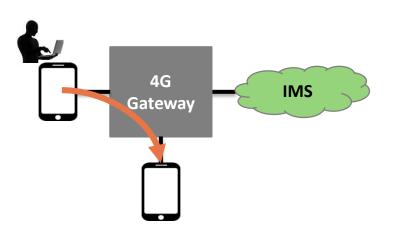

- No authentication
 - Make a call with a fake number
- No session management
 - Send multiple INVITE messages
 - Several call sessions are established
 - In a normal call, one user can call to only one person
 - For each call session, high-cost bearer is established
 - Even one sender can deplete resources of the core network

Weak Point	Vulnerability	US-1	US-2	KR-1	KR-2	KR-3	Possible Attack
INAC	No Authentication			0	0		Caller Spoofing
IMS	No Session Management	0	0	0	•	0	Denial of Service on Core Network

👓 : Vulnerable

: Secure

Caller Spoofing Scenario



IMS Bypassing

- ✤ All voice packets should pass IMS, but
- ✤ An attacker can bypass SIP servers in IMS
 - IMS vulnerabilities are also possible
 - e.g. Make a call with a fake number

...

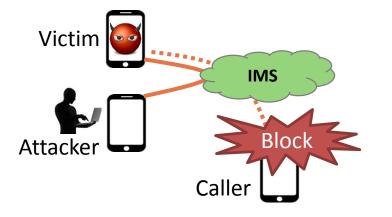
: Secure

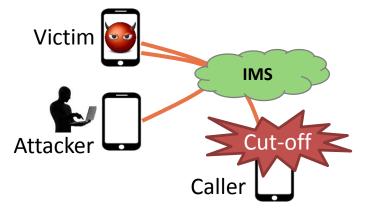
Weak Point	Vulnerability	US-1	US-2	KR-1	KR-2	KR-3	Possible Attack
4G-GW	IMS Bypassing	0		0			Caller Spoofing

💁 : Vulnerable

Android Permission Model Mismatch

- No distinction between a phone call and a normal data socket
 - An app needs "android.permission.CALL_PHONE"
 - In VoLTE, we found that an app can call with "android.permission.INTERNET"
- ✤ A malicious app only with Internet permission can perform
 - Denial of service attack on call
 - Overbilling attack by making an expensive video call


Weak Point	Vulnerability	US-1	US-2	KR-1	KR-2	KR-3	Possible Attack
Phone	Permission Mismatch	Vu	Inerabl	e for al	l Andro	bid	Denial of Service on Call, Overbilling



Denial of Service on Call Scenario

Blocking an incoming call


Cutting off an ongoing call

Free Data	a Channels	Free	Chanr	nel		US-1	US	-2	KR-1	KR-2	KR-3
Licing Vol			unneling			\checkmark		1	\checkmark	\checkmark	\checkmark
Using VOL	TE Protocol	Media	Tunne	eling		\checkmark	\checkmark	/	\checkmark	\checkmark	\checkmark
Di	rect	Phone	e to Ph	one		\checkmark	X				X
Commu	unication	Phone	to Inte	ernet		X	\checkmark	/	\checkmark	X	X
Weak Point	Vulner	ability	US-1	US-2	KR-1	KR-2	KR-3	Possible Attack			
	No SIP En	cryption	0		0	0	0	Mes	sage manipı	ulation	
IMS	No Voice Dat	a Encryption	0	0	0	0	0	Wire	√√√XXX <td< td=""><td></td></td<>		
11115	No Authe	ntication			0	0		Calle	er Spoofing	√ √ X X ible Attack ulation	
	No Session N	lanagement	0	0	0		0	Deni	al of Service	√ √ X X sible Attack ulation	etwork
4G-GW	IMS Byp	bassing	Caller Spoofing								
Phone	Permission	Mismatch	Vu	Inerable	e for a	ll Andro	bid	Deni	al of Service	e on Call, Ov	erbilling

🥌 : Vulnerable

🙂 : Secure

Mitigation

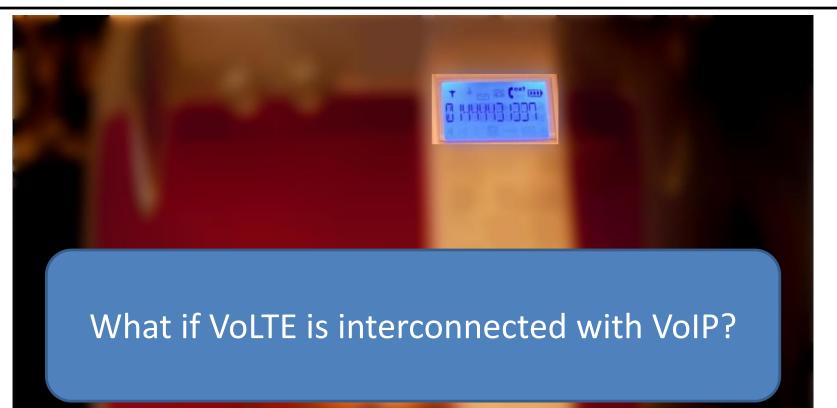
Point	Vulnerability	Mitigation	Responsible Entity
	No Security Mechanisms	IPsec/TLS + SRTP	
IMS	No Authentication	Operators IMS provider	
	No Session Management		
4G-GW	Direct Communication	Regulation on direct communication	Operators
	Permission Mismatch	Strictly binding sockets to data interface	Mobile OS (Android)
Phone	SIP/Media tunneling	Regulation on packet routing Deep packet inspection (DPI)	Mobile OS (Android) Operators

How to resolve media tunneling?

Not easy! Maybe byte-usage accounting?

Discussion

- Some parts of 3GPP specifications are left to operators
 - Several misunderstandings of the operators
 - Different implementations and security problems
 - Even important security features are only recommendations, not requirement
- ✤ We reported vulnerabilities to US/KR CERTs, and Google in May
 - Google replied "moderate severity"
 - All two U.S. operators ACK'ed, but no follow-ups
 - Only two among three KR operators have been fixing with us


← → C □ ww	with cort o	ra /unia/id/0/121	167			
	w.kb.cert.c	Elevation Of	Privilege Vulnerab	ility in Telepł	nony	
CERT To Software Vulnerabi Advisory and mitigati		pass unauthoriz It could also pro the mute setting	in the Telephony compo zed data to the restricte event the device from r gs of calls. This issue is n " <u>dangerous</u> " permissio	d network inter eceiving calls as rated as Moder	faces, potentially im well as allowing an	pacting data charges attacker to control
DATABASE HOME	SEARCH	CVE	Bug(s)	Severity	Affected versions	Date reported
		CVE-2015-6614	ANDROID-21900139	Moderate	5.0, 5.1	Jun 8, 2015
Vulnerability	Note V	U#943167				viay
Voice over LTE	E impleme	entations cor	ntain multiple vuln	erabilities		
Original Release date: 1	6 Oct 2015 La	ast revised: 20 Oct 2	015			
CWE-732: Incorrect P	ermission As	signment for Crit	ical Resource	een f	ixing with us	
CWE-284: Improper A	Access Contro	bl			-	
CWE-287: Improper A	Authentication	ı				
CWE-384: Session Fi	xation					

$\leftarrow \rightarrow 0$	C www.kb.cert.graduula/id/042167
	Elevation Of Privilege Vulnerability in Telephony
CERT Vuln	Software Engineerin A vulnerability in the Telephony component that can enable a local malicious application to pass unauthorized data to the restricted network interfaces, potentially impacting data charges. It could also prevent the device from receiving calls as well as allowing an attacker to control
Advisory	Acknowledgements
DATABA	We would like to thank these researchers for their contributions:
DATADA	
	 Abhishek Arya, Oliver Chang and Martin Barbella, Google Chrome Security Team: CVE-2015-6608
	 Daniel Micay (daniel.micay@copperhead.co) at Copperhead Security: CVE-2015-6609
Vulne	 Dongkwan Kim of System Security Lab, KAIST (dkay@kaist.ac.kr): CVE-2015-6614
Voice	
	 Hongil Kim of System Security Lab, KAIST (hongilk@kaist.ac.kr): CVE-2015-6614
Original R	 Jack Tang of Trend Micro (@jacktang310): CVE-2015-6611
CWE-732	Peter Pi of Trend Micro: CVE-2015-6611
CWE-284	 Natalie Silvanovich of Google Project Zero: CVE-2015-6608
CWE-287	 Qidan He (@flanker_hqd) and Wen Xu (@antlr7) from KeenTeam (@K33nTeam, http://k33nteam.org/): CVE-2015-6612
CWE-384	Seven Shen of Trend Micro: CVE-2015-6610

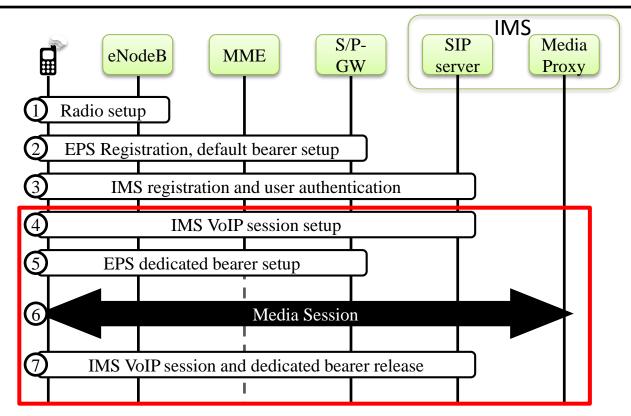
Is VoIP Secure Enough?

Conclusion

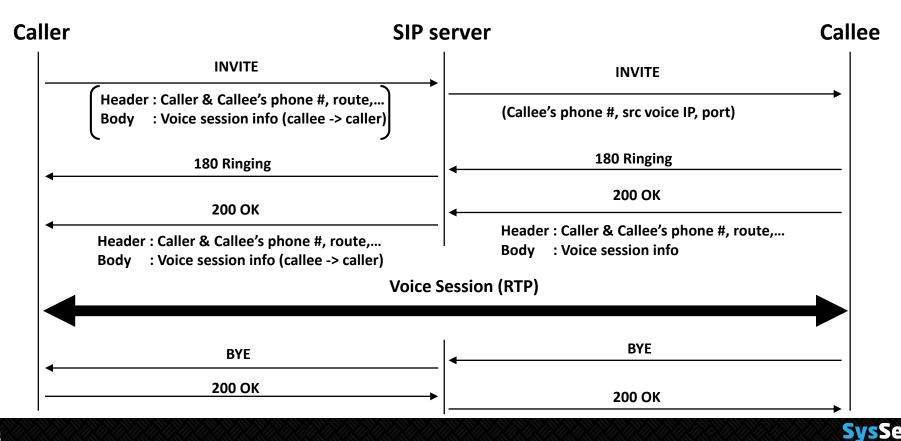
- Newly adopted VoLTE has
 - A complex (legacy time-based) accounting
 - Delegated voice signal (previously done by CP) to AP
- ✤ We analyzed the security of VoLTE for 5 operators, and found
 - Four free data channels
 - Five security problems
- ✤ All related parties have problems
 - 3GPP, telcos, IMS providers, mobile OSes, and device vendors
- More and more reliance on cellular technology
 - Automobiles, power grid, traffic signal, ...

Holistic re-evaluation of security for VoLTE?

Thank You!


Any questions?

<u>dkay@kaist.ac.kr</u> <u>hongilk@kaist.ac.kr</u>



VoLTE procedure

SIP Signaling Procedure

System Se

Empirical Analysis

	US-1	US-2	KR-1	KR-2	KR-3
Network protocol	IPv6	IPv6 + IPsec	IPv4	IPv4	IPv6
Transport protocol for SIP	TCP & UDP	TCP & UDP	UDP	UDP	UDP
Encryption algorithm for IPsec	-	AES	-	-	-
Capability of changing SIP source port	1	×	1	1	1
Existence of a media proxy	×	1	×	1	1
Sending random data through media session	1	1	1	1	1
Free use of audio channel	1	1	1	1	1

Detailed Results of Media Tunneling

Media channel characteristics from the control plane messages

	US-1	US-2	KR-1	KR-2	KR-3
QoS Param. (Kbps)	38	49	41	41	49
Bandwidth (Kbps)	38/49	49	65	65	65
Latency (sec)	0.1	0.1	0.1	0.1	0.1
Loss rate (%)	1	1	1	1	1

Actual measurement results (trade-offs between throughput and loss rate)

	US-1	US-2	KR-1	KR-2	KR-3
Throughput (Kbps)	37.90	36.93	45.76	39	50.48
Latency (sec)	0.52	0.02	0.10	0.32	0.30
Loss rate (%)	1.44	1.74	0.77	0.65	0.73

